Contemporary Mathematics
Volume 180, 1994

Balancing Domain Decomposition for Plates

PATRICK LE TALLEC, JAN MANDEL, AND MARINA VIDRASCU

ABSTRACT. We show that the Neumann-Neumann preconditioner with
a coarse problem can be applied to the solution of a system of linear
equations arising from the thin plate problem discretized by the HCT
and DKT elements. The condition number is asymptotically bounded by
log?(H/h), with H the subdomain size and h the element size. The bound
is independent of coefficient jumps of arbitrary size between subdomains.
Numerical results are presented.

1. Introduction

This note presents an application of the Balancing Domain Decomposition
(BDD) method to the solution of linear systems of equations arising from
the finite element discretization of thin plate problems. The BDD method
was developed from the Neumann-Neumann preconditioner of De Roeck and
Le Tallec [5] by Mandel [9], who has modified the algorithm by adding a coarse
problem with few unknowns per subdomain. Solving the coarse problem in each
iteration coordinates the solution between the subdomains and prevents any
slow-down with an increasing number of subdomains.

The coarse problem, as introduced in [9], is composed of the rigid body modes
of the substructures. Other modes can be added to the coarse problem to remove
troublesome modes from the iterative process; in effect, these modes are resolved
directly in every iteration. While the possibility of adding such modes has been
known, it was not clear how to do that efficiently. This paper presents the first
such example: for thin plates, these modes are the subdomain solutions for point
loads applied at crosspoints (i.e., at subdomain corners).
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For the reduced Hsieh-Clough-Tocher (HCT) and Discrete Kirchoff Triangle
(DKT) elements, the condition number of the algorithm is proved to grow at
most as fast as log?(H/h), where H and h are the characteristic subdomain size
and element size. Numerical results confirm that the fast growth of the condition
number for decreasing b is indeed prevented by the additional coarse functions.
Using a result of Mandel and Brezina [10], it is shown that the bound does not
depend on the jumps of elasticity coefficients between subdomains. We omit the
proofs of technical lemmas, but the principal argument is complete.

For related work on the Neumann-Neumann preconditioner, we refer to
Glowinski and Wheeler [8]. For a somehow different formulation of the
Neumann-Neumann problem with similar bounds for second order problems we
refer to Dryja and Widlund [7]. The BDD method was also applied to mixed
problems by Cowsar, Mandel, and Wheeler [4].

2. Finite Element Plate Model

Let © C IR? be a bounded polygonal domain decomposed into nonoverlapping
subdomains 4, ... ,€%. There is given a conforming triangulation {T'} of Q such
that each ; is the union of some triangles (elements) from {I'}. The subdomains
Q; and the elements {T'} are shape regular. The characteristic subdomain size is
H and the characteristic element size is h. Throughout the paper, C and ¢ are
generic constants that do not depend on H and h but may depend on the shape
regularity of the triangulation and subdomain decomposition. The union of all
subdomain boundaries is I = U¥_; 8€);, and it consists of edges and crosspoints at
the junctures of the edges. We assume that each subdomain §2; has at least three
points that are crosspoints or in the part of the boundary 952, where the plate
is simply supported, and the three points form a triangle with angles bounded
below by 1/C.

Spectral equivalence of quadratic forms is defined by

a(u,u) ~ blu,u) < IC Vu: %a(u, u) < blu,u) < Calu,u).

The domain of the forms will be always clear from the context. The Sobolev
seminorms in W™P(X) are denoted as usual by |u|m 5, |- | is the Euclidean
norm, and P,(X) is the space of all polynomial functions of order p on X.

We solve the problem of finding the displacement of a thin plate occupying
the domain 2, clamped on 2, C 8 and simply supported on Q, C 8. Plate
elements used in engineering practice have typically three degrees of freedom
per node, corresponding to the transversal displacement u and the rotations
0 = (6,), @ = 1,2. Under the Kirchoff hypothesis

(1 § = Vu,
the problem to be solved is to find the transversal displacement u so that

2) u€ H(Q): alu,v)=L{v), YveHQ),
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where

—

a(u,v) = /n e(@(w)) : K - e(0w),

Lv) = / fv+ / MgOpv +/ gv,
Q 890-89, a0-8%,
H(Q) {ve H*(Q),v =00n 8Q,, 8,v=0on d},

where ¢ is the linearized strain tensor. The plate flexural stiffness tensor K is
assumed to be symmetric, measurable, and, on each subdomain ;, uniformly
positive definite and bounded:

Il

e:K(z):e~pee, p; >0, Yz € £;.

Then one has the spectral equivalence

k
3) a(u,u) ~ Zpi lul3 2.0,
=1

which will be the starting point of our investigations. The numbers p; have
interpretation as the relative stiffnesses of the subplates ;.

We first consider a discretization of the problem (2) by the reduced Hsieh-
Clough-Tocher (HCT) triangle. Here we only note that the HCT element is C*
continuous, satisfies u € P3(c), 8,u € P1(o) on each side o of the element, and is
composed of three P; subtriangles; for more details on the HCT element, see [3].
Denote by Fyer the interpolation operator associated with the HCT elements.
The finite element discrete problem is obtained by replacing the space H in (2)
by the finite element space Hy, = Hy () = H N Im Iycr. The value of IycrU
on a side of T depends on the degrees of freedom on the side. Hence, by abuse
of notation, we also note

Iycr :V; — ]Hh(aﬂi), Incr:V— Hh(r)'

Here V; and V are the spaces of vectors of degrees of freedom on 9%, and T,
respectively. I, (9;) and H(T') are the spaces of traces of functions from H,
on J); and T, respectively.

The local stiffness matrices, defined by

XtAY = / e(@IuerX)) : K : e(@(Tuct)).
T

satisfy the spectral equivalence property
(4) UtATU ~ pil| VIncr Ul 1

The theory presented in this paper applies to the HCT elemem‘and ?(7 any
element with the degrees of freedom u.#;, 6, at each vertex satisfving {-’1).‘ The
Discrete Kirchoff Triangle (DKT) element is an example which enfor(:es {1} only
along each side of the element T {1}. The proof of {4) for the DKT element



518 P. LE TALLEC, J. MANDEL, AND M. VIDRASCU

as well as for stabilized Reissner-Mindlin elements will be presented elsewhere.
Quadrilateral elements may be treated as two triangles for which (4) holds.

3. Formulation of the Algorithm

We recall the algorithm following [9, 10]. The local stiffness matrix corre-
sponding to subdomain §; is A; and U; is the corresponding vector of degrees of
freedom. Let ‘N; denote the matrix with entries 0 or 1 mapping the degrees of
freedom U; into global degrees of freedom: U; = Nf U. Write

fL' Bz N (N -
A= ( Bt A ), N; = (N;, N;),

where the first block corresponds to degrees of freedom on I'. Eliminating the
remaining degrees of freedom, one obtains the reduced system

(8) SX = B,

for unknown values X of the degrees of freedom on I, posed in the space V. The
matrix S is the Schur complement, defined by

k
S=Y NiSiN, Si=A—B;A7'B.

The reduced system (5) is solved by a preconditioned conjugate gradient algo-
rithm. To define the preconditioner, we need auxiliary matrices I); and Z; such
that

k
ZNZDz.Z\_]'f =1, KerS; ClImZ,.
i=1

The choice of D; and Z; will be specified later. Define the coarse space

k
W={veV :v= ZNiDiui,ui € Im Z;}.

g=1

Our algorithm is :

ALGORITHM 1. Given R €V, compute U € V as follows:
(i) Find A; so that Z{DiNY (R -85 J\'erij,\j) =0,i=1,...,k.
(i) Set R; = DIN{(R— SYF_, NyD;Z; ;).
(ili) Find a solution U; for each of the local problems S;U; = R;, i = 1,...,k
(iv) Find p; so that Z!DiN} (R—SZ;?___1 N;D;(U; +Zjuj)) =0,i=
1,...,k.
(v) The output is U = Zle N, DU, + Z; ;).
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The solution of the auxiliary problem in step 1 can be omitted by choosing
a suitable starting vector to guarantee that A; = 0 in every step. Mandel [9] has
shown that the right-hand sides of the singular problems in step 3 are consistent,
the output z from Algorithm 1 is independent of the choice of & solution in step
3, and the following condition number estimate holds.

THEOREM 1. Algorithm 1 retwrns U = M~'R, where M is symmetric
positive definite and

K(M™LS) = Amac(M8) [Amin(M™1S)
. {z;;l I8} i NiDUil3,
i Ui,
The main trick in this paper is now to use the flexibility in the choice of the
matrices Z; to enforce that the supremum in (6) is taken only over vectors U;

such that the normal displacement IncrU; is zero at all crosspoints. For this
purpose, choose

(6) <

(7) Z‘Lz[X137Xn17},’L17Yzmz]

where {Xi,...,X,.}, n; < 3, is a basis of Ker S;, and for each crosspoint
J=1...,m; of Q, Yi; is a solution of the problems 8.Yi; = Ey;, with Ey;
the vector corresponding to a unit normal load applied at crosspoint j. Indeed,
since SZ is SyIIlIIletI‘iC, SZU,L 1 ),ij implies that Ul 1 SZY;J = Ltyj, SO IHCTUi is
zero at all crosspoints.

It remains to construct the weight matrices D;. If G is an edge or a crosspoint
of ', define Eg : V — V as follows : Eq(U) is the vector with the same values
of the degrees of freedom as U on G, and zero values of all the other degrees
of freedom. Here, an edge does not contain its end crosspoints, so 3, Eg = I.
Now set, with 3 > 1/2,

3
® D= Y diONEN,  diG)= — L
GCoQ; Z £
5:GNOQ, D

That is, the weight matrices D; are diagonal, with the diagonal entry equal to the
ratio of pf to the sum of pf for all subdomains sharing that degree of freedom.
In our computations, we choose 8 = 1 as in [5].

4. Condition Number Estimate

The following theorem follows immediately from Theorem 3.3 in Mandel and
Brezina [10].
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THEOREM 2. Let the weight malrices D; be constructed as in (8) with 8 >
1/2, and for all subdomains crosspoints or edges G C 0§; N ASY;,

1, - _
(9) p—HN;EGNiUiu%j < leHUinsi, YU; L KerS;, SiU; L ImZ; .

5 i
Then the condition number from (6) satisfies k < 9(K + 1)°R, where K is the
mazimal number of adjacent subdomains to any subdomain ;.

Define continuous analogues of the projection operators F¢ via the interpo-
lation mapping IycT,

Eq : Hy(T) — Hi (D), EcluctU = IncrEcU, VU e V.

Verification of the bound (9) will be based on estimates in the trace norm of the
operators £g. For this purpose, we first state several technical results concerning
the trace norm.

An extension lemma can be proved by similar arguments as in Widlund [11].

LEMMA 1. For any u € H,(09;), there is a v € H(;) so that vjpo, = u,
and |Vvly,0, < C|Vuli220;-

From Lemma 1 and the trace inequality follows the equivalence of seminorms
1
(10) ;IUI?% ~ |VIHCTU|§/2,2,691—-
N T

The following estimate of the trace norm of the extension by zero is proved as
in Bramble, Pasciak, and Schatz [2, Lemma 3.5].

LeEMMA 2. There exists a constant C such that if the support of u is contained
in a segment o of 0 of length T, and |%—’;|0,oo,g < #lulo,oc.0, then
T
lul%/z,z,an,- < luﬁ/z,z,a +C (1 + log ﬁ) [ul3 o0 -

We will aiso need an extension of the discrete Sobolev inequality of Dryja [6]
to piecewise polynomial functions of order p > 1.

LEMMA 3. Let p > 1. Then there erists a constant C = C(p) such that for
every u continuous on 08); such that u € P, on the side of every triangle T,

H 1
IVulg .00, < C (1 +log -h—> (lvuﬁ/z,z,aszi + 'ﬁlvuhzm,aszz) .

‘We are now ready for the main estimate.

LEMMA 4. There exists a constant C such that if G is a crosspoint or an edge

of §¥;, then it holds for all u € HH,(T'), such that u = 0 on all crosspoints of §1;,
that

H 1 .
WgGul%/z,z,aszj <C (1 + log” “E) (Ivuﬁ/‘z,z,am + Elvulé.z.@szj) ,
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with B =1 i G is a crosspoint and =2 if G is an edge.

Proor. Assume u € Hy(T') and u = 0 on all crosspoints of ;. Let F € 09,
be a crosspoint. The shape function ¢, p associated with the degree of freedom
Cou(F) satisfies

(11) |Véa,rhze <C, [Vda,rlogn, <Chy  |Véarlocen <C.

From (11), the trace theorem, and Lemma 2 with T = Ch, it follows that

(12) (Voo rli/2.200, < C.

Since u(F) = 0, we have Epu = 3, ¢a rOau(F), and the proposition with
G = F follows using Lemma 3 and (12).
Let Fy, F5 be crosspoints at the ends of an edge G. Since

Eaulg = (u—Epu—Enully

it follows using the inequality |la + b||> < 2 (Jlal|? + ||B}|?), from the already
proved estimate for the case of crosspoint, from inequalities (11), {12), and from
Lemma 3, that

IA

H 1
|V5Gu[%/2,2,a c (1 + log g) (Ivuﬁ/m,aszi + *H‘Vufg.z,aszi>

H 1
Veaulhg < € (1+108% ) (194 szn, + 5 haon,
H 1
fvgcufg,z,c < fvuig,z,m;“ Ch? (1 + log -h—) (W“ﬁ/z,z.asz; + 'g‘}vuig,fwszz)

Since Egu = 0 and VEgu = 0 at Fy and Fj, it remains only to apply Lemma 2
to 0x8cu, o = 1,2. O

The desired bound on the condition number follows.

THEOREM 3. Suppose that the assumptions made in Section 2 hold, that Z;
are defined by (7), and D; are defined by (8). Then the condition number of
Algorithm 1 satisfies

H
®< C(1+log27t—) )
with the constant C independent of H, h, and of the coefficients p; > 0.

PROOF. The assumption (9) of Theorem 2 follows from Lemma 4, the
equivalence of seminorms (10), and the inequality

[Vulg 200, <CH Ivuﬁgz.zan,

for all u € H,(d%;) that are zero at all crosspoints. [l
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TABLE 1. Results for a Rectangular Plate

h iter condition
no corners h 25 350
h/2 29 1430
h/4 32 5764
corners h 11 5.4
h/2 13 8.2
h/4 14 11.8

2 X 8 substructures, regular decomposition
Q = [-2,2] x [0,20], 8 x 64 HCT elements for initial h

TABLE 2. Results for oval plate with 24 subdomains (Fig. 1)

CPU CRAY 2 sec

h iter cond setup iter
HCT element h 43 153 148 3.6
no corners h/2 59 588 25.8 - 7.6
h/4 75 1981 53.9 27.7
HCT element h 16 78 158 2.9
corners h/2 23 222 26.0 4.3
h/4 33 760 578 13.2
DKT element A = 33 62 149 3.2
N0 COrners h/2 49 239 251 6.5
h/4 65 898 51.3 23.8
DKT element & 12 33 154 2.6
corners h/2 17 74 257 3.8
h/4 25 251 56.6 10.8

5. Computational Results

In all tests, “corners” refers to the case when Z; are defined by (7), and “no
corners” is the case when the point load solutions Y;; (“corner functions”) are
omitted from the columns of Z;. The plate was clamped on the whole boundary.
Ail experiments show that adding the corner functions improved the condition
number considerably. The condition numbers were estimated from Ritz values
in the Krylov space generated by conjugate gradients. The stopping criterion
was the ratio of the ¢2 norm of the residual and the right hand side less than
€ =107%. In all experiments, the domain and the subdomains remain the same,
and the elements are uniformly refined, so H is fixed. The condition number
appears to grow about as | log? h| with the added corner functions, and about as
1/h? without.

The purpose of the first test was to confirm the theory and demonstrate
the effect of adding corner functions on the condition numbers (Tab. 1). Then
to determine if adding the corner functions results in an improvement for
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FIGURE 1. Oval plate

a realistic problem, we considered an oval plate discretized by an irregular mesh
decomposed in 24 subdomains (Tab. 2, Fig. 1). The tests have shown that the
improvement in the CPU times for the iterations outweigh the increase in the
setup time due to the larger dimension of the coarse space.

6. Acknowledgements

The computations were run on the CRAY2 at CCVR, Palaiseau, France. The
authors would like to thank Professors Leo Franca and Doug Amold. for gsef\.ll
discussions, and Mr. Marian Brezina for reading a preliminary version of this

paper.

REFERENCES

1. J. L. Batoz, K. J. Bathe, and W. H. Ho, A study of three-node triangular bending element,

Int. J. Numer. Methods Engrg. 15 (1980), 1771-1812. y
2. James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz, The consiruction of

preconditioners for elliptic problems by substructuring, I, Math. Comp. 47 (1986), no. 175,



524 P. LE TALLEC, J. MANDEL, AND M. VIDRASCU

10.

11.

103-134.

. P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of Numerical Analysis

(Amsterdam) (P.G. Ciarlet and J. L. Lions, eds.), vol. II, North-Holland, Amsterdam, 1989,
pp. 17-352.

. Lawrence Cowsar, Jan Mandel, and Mary F. Wheeler, Balancing domain decomposition

for mized finite elements, Math. Comp., to appear.

. Yann-Hervé De Roeck and Patrick Le Tallec, Analysis and test of a local domain

decomposition preconditioner, Fourth International Symposium on Domain Decomposition
Methods for Partial Differential Equations (Roland Glowinski, Yuri Kuznetsov, Gérard
Meurant, Jacques Périaux, and Olof Widlund, eds.), SIAM, Philadelphia, PA, 1991.

- Maksymilian Dryja, A method of domain decomposition for 8-D finite element problems,

First International Symposium on Domain Decomposition Methods for Partial Differential
Equations (Roland Glowinski, Gene H. Golub, Gérard A. Meurant, and Jacques Périaux,
eds.), SIAM, Philadelphia, PA, 1988.

. Maksymilian Dryja and Olof B. Widlund, Schwarz methods of Neumann-Neumann type

for three-dimensional elliptic finite element problems, Tech. Report 626, Department of
Computer Science, Courant Institute, March 1993, submitted to Comm. Pure Appl. Math.

. Roland Glowinski and Mary F. Wheeler, Domain decomposition and mized finite element

methods for elliptic problems, First International Symposium on Domain Decomposition
Methods for Partial Differential Equations (Roland Glowinski, Gene H. Golub, Gérard A.
Meurant, and Jacques Périaux, eds.), SIAM, Philadelphia, PA, 1988.

. Jan Mandel, Balancing domain decomposition, Comm. in Numerical Methods in Engrg. 9

(1993), 233-241.

Jan Mandel and Marian Brezina, Balancing domain decomposition: Theory and compu-
tations in two and three dimensions, submitted.

Olof B. Widlund, An extension theorem for finite element spaces with three applications,
Numerical Techniques in Continuum Mechanics (Braunschweig/Wiesbaden) (Wolfgang
Hackbusch and Kristian Witsch, eds.), Notes on Numerical Fluid Mechanics, v. 16, Friedr.
Vieweg und Sohn, 1987, Proceedings of the Second GAMM-Seminar, Kiel, January, 1986,
pp. 110-122.

UNIVERSITE DE PARIS-DAUPHINE, 75775 PARIS CEDEX 16, FRANCE
E-mail address: Patrick.Le_Tallec@inria. fr

CENTER FOR COMPUTATIONAL MATHEMATICS, UNIVERSITY OF COLORADO AT DENVER,

Dexver, CO 80217-3364

E-mail address: jmandel@colorado.edu

INRIA, DoMAIN DE VOLUCEAU, 78153 LE CHESNAY CEDEX, FRANCE
E-mail address: Marina.Vidrascu@inria. fr





