Contemporary Mathematics
Volume 180, 1994

Analysis and Implementation of DD Methods for
Parallel FE Computations

HAI XIANG LIN

ABSTRACT. Applications of finite element methods (FEM) are known to be
computation-intensive. Therefore, various forms of parallel numerical algo-
rithms have been studied in order to speed up finite element computations.
Many of these recently proposed parallelization methods use domain decom-
position (DD) as a framework. In this paper, we analyze the load balance
and communication overhead in relation to the mumber of subdomains and the
number of processors. It is shown that for an efficient parallel computation the
often used formulation of the partitioning problem needs to be reformulated.
An efficient domain decomposer is presented which has been implemented as
a parallelization preprocessor for the finite element software package DIANA.

1. Introduction

In [3], a methodology is presented for the parallelization of the FEM software
packages (e.g. DIANA). Direct methods play a dominent role in commercial FEM
software packages, so we first focus on the parallelization of the direct solution of
a large sparse system of linear equations. Fig. 1 describes the major modules of
the parallelization method. The proposed approach starts by extracting parallelism
from the very beginning of a problem formulation: the description of the element
model (i.e. element domain). This is accomplished by performing domain decom-
position. The next module “ordering” determines a parallel elimination sequence.

Given an elimination sequence the non-zero structure of the matrix factor can
be determined through the so called symbolic factorization. The matrix factor is
stored as a doubly bordered block diagonal (DBBD) matrix (see Fig. 2¢). All block
submatrices in Region I are stored as skyline matrices, those in Region I are stored
as a collection of sparse vectors, and those submatrices in Region III are stored as
dense matrices. We define the operations (e.g. an LDL” factorization, an update)
with respect to an entire block submatrix as a single task. The task dependence
graphs of the factorization and triangular solutions are then derived from the non-
zero structure of the matrix factor. An efficient macro data flow execution scheme
is used to implement the parallel execution of the task dependence graph.

1891 Mathematics Subject Classification. 65F05, 65Y05, 65F50.

DIANA is a registered tradmark of TNO Institute.
This paper is in final form and no version of it will be submitted for publication elsewhere.

© 1994 American Mathematical Society
0271-4132/94 $1.00 + $.25 per page

407



408 HAI XIANG LIN

i dependence graph,
C clement Idomam ) distributed data structure
[ domain decomposition | distributed-memory :
eharbdmemory

data flow data flow
SPMD program SPMD program

1
C subdomains, separators )
I

r ordering J
1

- (b)
elim. sequence )
( (ﬁ&eifzr_am

r symbolic {'aztorization I Legends:
Cdata structure of the factoD ::
[ data representation
dependence graph J

( dependence graph, ) (@) activity

distributed data structure

F'IGURE 1. A strategy for the parallelization of direct solvers: the prepara-
tion phases; (b) Hlustration of the PARASOL programs.

In this paper, we will concentrate on domain decomposition techniques. In or-
der to handle regularly and irregularly structured domains with different types of
elements, the domain is considered as a (general) connectivity graph. The problem
of decomposing an element domain can now be considered as partitioning a graph.
The so-called graph partitioning problem for the purpose of parallel computation
is usually formulated as: Divide a graph (element domain) into p (p is the number
of processors) subgraphs separated from each other by the separators, such that the
subgraphs are of the same size, i.e. consisting of the same number of elements or
nodes, and that the number of separator nodes is minimal.

It is known that smaller separators between the subgraphs imply fewer commu-
nication during a parallel computation. The requirement that all subgraphs having
equal size are imposed to give a good load balance (we will show that more are
required for a good load balance). Minimal separators and all subgraphs having
equal sizes are two conflicting goals and the graph partitioning problem is known
to be N P-complete. So, in practice heuristics have to be used.

2. A short review of previous work

The one-way and the nested dissection (ND) methods {2] were originally used to
order the node elimination sequence for minimum fill-ins in sequential processing;
recently they have been succefully applied as DD techniques for parallel computa-
tion. The dissection method starts by finding a “peripheral” node of the graph,
then a subdivision is made through level-structuring. In case of one-way dissection,
an s-partition can be obtained by selecting (s — 1) levels in the level structure as
the sets of separators. In case of nested dissection, first a bisection is performed
by chosing a “middle” level which separates the graph into two subgraphs of about
the same size. Applying this bisection procedure on the resulting subgraphs re-
peatedly, a partition of s = 2° subgraphs is obtained after ¢ iterations. Finding a
good peripheral node usually requires a time of O(n?), so often a simpler approach
is applied. The dissection methods are simple and fast (if a simple peripheral node
is used), but do not give a very optimal separator length.

An alternative is to use a minimum-degree algorithm to perform a (sequential)
ordering first. Then, a partitioning is performed on the elimination tree correspond-
ing to the resulting ordering ([6], [1]). This method generally gives better results
than the dissection methods in terms of separator length. However, the resulting



DOMAIN DECOMPOSITION FOR PARALLEL FE COMPUTATIONS 409

. \/’;’ ., interface size | ; Region |
Dl 121D2 131 D5I22 De 141 4h+3 2 0
—111—112 -l—ns— —J14-4 3
D4 D3 D8 | D7 Bl 132 2ml
I i AN A T
Di3 | D14 | Do | D10 517152 3IX0
EEE I el BN T v | 122 123 124 2p+1 1621621 Xl6
U817 —|=Ti6=|-15— %\ AU EAN KT EEB I AL
D16 124D15132 D12123 D11 | 111 112 113 114 145 116 117 118 & v N,
@ ) Region I © Region I

Ficure 2. (a) A decomposition into 16 subdomains; (b) The elimination
sequence of interfaces according to ND-ordering; (¢c) The DBBD matrix.

3 3

Pt Pt
i $s
1 1
34834 104502 174170 —= ¢t 21659 64977 108295 —=={
(a) )

FIGURE 3. Execution profile of an example problem divided into (a) 3 sub-
domains; {b) 6 subdomains. p = 3. P, is the number of tasks exccuted in
parallel at a time.

subgraphs can vary considerably in size. Moreover, for a graph with n nodes a
minimum-degree algorithm has a time complexity of O(n?) as compared to that
of O(n) to O(n - log(n)) for the dissection methods. This means that the method
using a minimum-degree algorithm has a higher time complexity than the solution
of the sparse matrix system (e.g. O(n®?) for a v/n X /7 2-D grid).

Another popular method is the spectral bisection (SB) method [7]. The SB
method uses the second smallest eigenvector of the Laplacian matrix as the sepa-
rator for a bisection of the graph. In terms of optimality the SB method is more
robust than the dissection methods. However, it again has a time complexity of
O(n?). So, speeding up the partitioning by means of parallel processing becomes
an important issue. The parallel SB algorithm on the CM-5 is such an example.

3. Analysis of load balance in relation to the number of subdomains

In this section, we analyze the load balance and parallel efficiency as a function
of subdomain’s size and the number of processors. Because it is very hard to make a
complexity analysis of a general element domain, we consider a 4/n X /7 mesh and
generalize the results to other problems. The 4/n X 4/ element mesh is subdivided
into s subdomains each of size y/n/s x \/n/s as shown in Fig. 2a. We consider the
factorization of 4 = L-D-LT with A being obtained through an ordering equivalent
to the ND-ordering for the interfaces. We consider parallel sparse factorization of
the type of medium to large granularity. Operations on the same block in the DBBD
matrix form a single task and are scheduled on a single processor. In order to malfe
the analysis simpler, we assume that the parallel factorization algorithm executes in
a “lock-step” fashion. That is, all processors start with executing a group of tasks
at the same time, they will wait for all the processors have completed their (furrt:nt
group of tasks before entering a communication phase. After a communication



410 HAI XIANG LIN

phase, all processors will start to execute the next group of tasks.

The procedure of computing the LDLT factor of the DBBD-matrix according
to the ND-ordering can be described as follows.

1. For each 4;; in Region I, compute the LDLT factor: A;; — L;; - Dis LZTZ,
for : = 1,...,s. All the submatrices in Region I can be factorized independently

2. Compute the factors in Region II: L;; = A;; - L_T D'1 forj=1,...,s and
(interface segment) 7 € Adj{subdomain j}, followed by the updates in Reglon
III (Schur-complement): Ag1,x2 = Ar1,k2 — Le,k - Dk - Lkz,k fork=1,..,sand
interface segments k2, k¥ €Adj{subdomain k1}.

3. The interface segments induced by the last (recursive) bisection are eliminated
first. Level d = log(s) comprises the interfaces of the last bisections and level
1 the interface of the first bisection. The elimination sequence of the interfaces
corresponds to an elimination tree in Fig. 2b. At each level I, the elimination can
be performed simultaneously, followed by the updates: Agy 32 = Agp1,k2 — Li1,k -
Dy g - Lk2 & for k1 being an interface segment at level | and interface segments
k2,k EAdJ{mterfa.ce segment k1}.

Let each subdomain consisting of h? interior nodes. For p = s = h? (hence n =
s+ h? = h%), it has been derived in [3] that the parallel efficiency is
829/42

=~ 0.6
8-nl/2/p+ 26 + (log(p) — 44)/2 - p*/2 —70/p

(31)  nlp=s)~

When p = s/2 = h%/2, the parallel efficiency becomes:

829/42
3.2 = 2) &~
(3.2) n(p=s/2) B r14.v3 g1

= 0.68

In the calculation of the above efficiencies, the sequential time of the (complete)
nested dissection ordering is used, which is known to be optimal in terms of the
order of the number of floating point operations [2]. It has been shown in [3] that
for s 3» h > 5 (i.e. n is very large), the parallel efficiencies are 1 ~ 0.76 for p = s
and 7 & 0.92 for p= 3/2.

The results shown in (3.1) and (3.2) do not include the communication overhead,
so they can be interpreted as the degree of load balance. It can be concluded that
the load balance is significantly improved by partitioning a domain into 2-p instead
of psubdomains. This is also illusfrated in Fig. 3. Fig. 3a and 3b show the execution
profiles of a problem partitioned into 3 and 6 subdomains tespectively. The number
of processors is 3. The execution profile shows the number of parallel tasks as a
function of the time. The work load among the 3 processors in Fig. 3b is clearly
beter balanced than in Fig. 3a.

When the parallel factorization is performed on a distributed memory system,
there will be communication overhead. The load balance is increased by increasing
the number of siibdomains, however, the communication overhead will increase as
well. For example, on a 2-D grid of \/p x /p processors, the communication time is
Teomm = O(cy-p-h® +c3-4/s-h?). For a constant p, when s increases from p to 2-p,
the increase in communication time is bounded by a factor of v/2. Thus, if Teormm
is about 10% of the total execution time for s = p, then T.omom is less than 14%
for s = 2-p. So, for a non-communication-dominant computation the improvement



DOMAIN DECOMPOSITION FOR PARALLEL FE COMPUTATIONS 411

Initialization: Mark all elements in G as unpartitioned;

While (not all elements in G are partitioned) do
Select an unpartitioned element el with the minimum degree;
Determine a set S of elements by a level-structuring algerithm using el as starting
point; and which holds that all elements in 5 have not been partitioned previously and
min_size <| S |< maz_size;
Determine the set of newly introduced separators I;
Improve I by means of the bipartite matching technique and adjust the S accordingly;
Add the set S as the new subdomain;
Mark all elements in S in the graph as partitioned;
od;
Define the interface segments in the resulting partition of the graph;
Improve the subdomain connectivity of the resulting partition through adjusting the interface
segments;

FIGURE 4. A sketch of the graph partition algorithm GP.

in load balance (between 8% and 16%) outweighs the increase in communication
overhead. We conclude that it is generally better to partition a domain into k- p
subdomains with k is a small integer larger than 1 (say 2 or 3).

4. A generalized graph partitioning algorithm

From the analysis in Section 3, we reformulate the partitioning problem as fol-
lows: Divide a graph into k- p subgraphs, such that the size of the subgraphs is
between min_size ond max.size and that the number of separator nodes is mini-
mal. .

The relaxation of the requirement of all subdomains having equal size creates
the possibility for reducing the length of the separators. Load balance can still be
achieved through combining smaller and larger subdomains together to a processor
during the task assignment. Experiments show that choosing the values of min_size
and maz_size to differ about 10% from the mean value n/p gives good results.

Fig. 4 depicts a scheme of the graph partitioning algorithm. The algorithm
starts with determining an initial partition of a subdomain by means of a variant
of the dissection methods (similar to the Cuthill-McKee ordering). Then, in order
to shorten the length of the (newly) introduced separators between the current
subdomain and the unpartitioned parts, a bipartite maximum matching algorithm
[6] is applied. This procedure repeats until the entire graph is partitioned. Finally,
the separators are improved for a smaller subdomain interconnectivity [3].

5. Results

Fig. 5 shows two examples of domain decomposition produced by the algorithm
GP. The time complexity of the algorithm GP is O(n-log(n)), so the time required
to partition a domain is typically less than 10% of the factorization time. Exper-
iments on a Convex shared-memory vector computer with 4 processors show that
typically efficiencies between 75% and 95% are obtained [4]. In Table 1 some sim-
ulation results of the parallel solver on a distributed memory computer are shown.
The four problems are as follows. (1) A plate decomposed into 3 subdomains and
the execution is simulated for 3 processors; (2) Mesh A, decomposed into 64 sub-
domains and simulated for 32 processors; (3) Mesh B, as in (2), but now simulated
for 64 processors; (4) A stopcock, decomposed into 9 subdomains and simulated
for 9 processors. T is the duration time of a parallel factorization (incl. the com-
munication time) simulated using the timing characteristics of the Intel iPSC/2.



412 HATI XTANG LIN

\ N R S —a
O | -+
N AN N . | A4 L1
M p N i v oy g B
\\ \ S 1 Y — — L1 //
LN T L
- ) -
u h 1
Y T Lt
—— = Wt |1
. TN -t
AT muNNEE
/’///:/ \:\\\\\
L1 i X
L N
o 7 7 71 N A . ™~
d 771 (A WA N ™
ARV AR i I 1} ' N
7 | W W —.
(a) (b)

FIGURE 5. (2) A masonry wall partitioned into 5 subdomains; (b) A stop-
cock partitioned into 6 subdomains. ’

Problem | Plate | Mesh A | Mesh B | Stopcock
o 64.8 73.8 57.0 79.7
B 14.3 7.7 15.2 11.8
T 133706 | 7572911 | 4840176 | 226948925

TABLE 1. Some simulation results of the parallel execution of the task graphs
resulted from DD. T is in time unit equivalent to a floating point operation.

a is the ratio between the average busy time per processor and T. S is the ratio
between the average communication time per processor and 7. o and B indicate
the load-balance and communication overhead respectively.

Conclusions We have analyzed the DD technique for parallel direct solution of FE
systems. It is shown that a better load-balance is achieved if the number of subdo-
mains is k times (k > 1) the number of processors. We have reformulated the graph
partitioning problem to allow a better resolution of the trade-offs between balanced
subdomains and minimal separators. The results obtained from the parallelization
of DIANA show that it is an efficient method for parallel FE computations.

REFERENCES

1. C.C. Ashcraft, The domain/segment partition for the factorization of sparse symmetric positive
definite mairices, Eng. Comp. & Anal. TR ECA-TR-148, Boeing Compter Service, Nov. 1990.

2. A. George and J.W H. Lin, Computer solution of large sparse positive difinite systems, Prentice-
Hall, 1981.

3. H.X. Lin, A methodology for parallel direct solution of finite element systems, Ph.D. thesis,
Delft University of Technology, 1993.

4. H.X. Lin and H.J. Sips, Parallel direct solution of large sparse systems in finite element com-
putations, Proc. 1993 Int. Conf, on Supercomupting, Tokyo, July, 1993, pp. 261-270.

5. JW.H. Liu, 4 graph maiching algorithm by node separators, ACM Trans. Math. Softw. 15
(1989), 198 - 219.

6. J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl.
11 (1990), 134-172.

7. A. Pothen, H.D. Simon and K-P. Liou, Partitioning sparse mairices with eigenvectors of graphs,
SIAM J. Matrix Anal. Appl. 11 (1990), 430-452.

DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS, DELFT UNIVERSITY OF TECH-
NOLOGY, MEKELWEG 4, NL-2628 CD, DELFT, THE NETHERLANDS
E-mail address: lin@pa.twi.tudelft.nl



