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Domain Decomposition Via the Sinc-Galerkin
Method for Second Order Differential Equations

NANCY J. LYBECK AND KENNETH L. BOWERS

ABSTRACT. The solution of elliptic problems using domain decomposition tech-
niques has been of great interest in recent years. Sinc basis functions form a
desirable basis to use in approaching domain decomposition for elliptic prob-
lems because they are especially well-suited for problems with boundary sin-
gularities, and both the Sinc-Galerkin and sinc-collocation methods converge
exponentially. This paper deals with overlapping and patching domain de-
composition used in conjunction with the Sinc-Galerkin method for both the
two-point boundary value problem and Poisson’s equation on a rectangle.

1. Introduction

Sinc methods for differential equations were originally introduced in [9]. Since
then they have become increasingly popular, and have been well-studied. Both the
Sinc-Galerkin and the sinc-collocation methods converge exponentially, even in the
presence of boundary singularities, as shown in [1], [6], and [9]. Both methods per-
form equally well in domain decomposition for the two-point boundary value prob-
lem, as seen in [8]. For Poisson’s equation, the Sinc-Galerkin and sinc-collocation
methods are identical. For this reason only the Sinc-Galerkin results will be pre-
sented.

Although elliptic problems are generally approached with patching domain de-
composition methods, certain characteristics of the sinc basis functions make over-
lapping domain decomposition desirable. Because of this, both methods have been
explored. See [2] for further details on these methods. Numerical results are pre-
sented for both overlapping and non-overlapping methods. These results exhibit
nearly identical errors achieved with each method. A brief introduction to the Sinc-
Galerkin method is given in §2. Domain decomposition for the two-point boundary
value problem via the Sinc-Galerkin method is presented in §3. Similarly, domain
decomposition for Poisson’s equation via the Sinc-Galerkin method is discussed in
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4. Both sections §3 and §4 include one example designed to highlight the Sinc-
Galerkin method’s ability to deal with boundary singularities. In each case, results
for both the patching and overlapping methods are presented.

2. The Sinc-Galerkin Method
The two-point boundary value problem on the finite interval (a,b) is given by
Lu(z) —u(z) + p(z)v'(z) + g(x)u(z)
(2.1) = f(z), a<z<b
ula) = u(d)=0.

The classical Sinc-Galerkin method for problems of this type is discussed in detail
in [3—7],[9], and [12].
The sinc basis functions used in solving (2.1) are given by

8;(z) = 8(j, h) o $(z) = sinc (M’h:ﬂ>

where h > 0, j is an integer, z € (a,b), and

sin(my)
sinc(y)z{ s y#F0
1, y=20

The conformal map

o) =1 (322

is used to define the basis functions on the finite interval (a,b). The sinc nodes zj
are chosen so that

_ 1 _a+beth
xy, = p(kh) = ¢~ (kh) = P
The approximate solution is then given by
N
(2.2) U (2) = Z upSp(z) , m=M+N+1
k=—M

Orthogonalization of the residual against each basis function

uses the weighted inner product

) b
(F.0) = / F(@)g(@)(¢ (@) 2ds .

Integration by parts is used to remove all derivatives from u, and applying the sinc
quadrature rule (found in [6] or [11]) yields the discrete Sinc-Galerkin system. The
following theorem for the convergence of this method in the case p{z) = 0 is proven
in [9].
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THEOREM 2.1. Let the numbers u,, (k= —M, ... , N) be determined from the
discrete Sinc-Galerkin system, and let u,,(x) be as defined in (2.2). Then under

appropriate assumptions (see [9]), with h = (ﬂ'/ VoM ), and N = M, the estimate
”um . u”oo < 0M2e—\/7rdaM

holds where u is the solution of (2.1} with p(z) = 0. The parameters d and o depend
on the analyticity and rate of decay of the solution u.

3. One-Dimensional Domain Decomposition

Both the overlapping and the patching methods of domain decomposition in-
troduce matching conditions at the interface of the domains. This requires the
addition of a boundary basis function to the approximation on each subdomain. In
either case, appropriate fourth degree polynomial boundary functions are given in
[8]. Similar situations arise in the solution of boundary value problems with non-
homogeneous Dirichlet boundary conditions. See [8] and [10] for more information.

The following examples have been chosen to show the rapid convergence achieved
by using the Sinc-Galerkin method in conjunction with both patching and overlap-
ping domain decomposition methods.

ExAMPLE 3.1. Consider

() + 4 (z) +ulz) = flz), -l<z<4

u(-1)=u{4) = 0.
In this example, f(z) was chosen so that the true solution is given by

VEF (2 — 4)?
16 )

u(z) =
Split the domain Q = [—1,4] into two subdomains given by either Q! = [—1,1]
and Q? = [.9,4] for the overlapping method, or Q! = [-1,1] and Q2 = [1,4] for

the patching method. The approximate solutions are shown in Fig. 1. The error
results are given in Table 1. Here, the sinc error is given by

IEs]l = max [u(z) - um(z)| ,

where S is the set of all grid points z; generated from the Sinc-Galerkin method
in both subdomains. The uniform error is found by letting

lEv] = max [u(y) — um ()]

where U = {y; = —1 + 55/100 : 0 < j < 100} is a uniform grid of mesh size 0.05.
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a. Overlappng Method

b. Patching Method

- True —
M=2
M=4 --
M=8

u(x)
u(x)

FIGURE 1. True vs. Approximate Solutions for Example 3.1. Fig.
1a shows the solution from the overlapping method. Fig. 1b shows
the solution from the patching method.

TABLE 1. Error in overlapping and patching methods for Example 3.1.

Overlapping Patching
M=N | __[Bd] 1Bs] 1Bo] 1Es]
2 2.3394e — 01  2.2852¢ — 01 |j 1.2803e + 00 1.2811e + 00
4 1.4258¢ — 01 1.4880e — 01 {| 1.4278¢ — 01 1.4888¢ — 01
8 6.6033¢ — 02 6.8459¢ — 02 || 6.5930e — 02 6.8455¢ — 02
16 1.9821e — 02 2.0531le — 02 || 1.9811e — 02 2.0531e — 02
32 3.3660e — 03 3.4897e — 03 || 3.3652¢ — 03 3.4897e — 03
64 2.6173e — 04 2.7141e — 04 || 2.6159¢ — 04 2.7141e — 04

4. Domain Decomposition for Poisson’s Equation

The basis used to solve Poisson’s equation is a product of sinc basis functions in
the z and y directions. Let

Sin(@,y) = Sj(®)Sk(y) » —Ma <J<Np, —My <k <N,

The approximate solution takes the form

Na: N’.'!
umz,my (mv y) = E Z ujksjk (13, y)

j=—M, k=—M,

where mg = M; + N +1 and my = My + N, + 1. As in the one-dimensional case,
one orthogonalizes the residual against each basis function and perform integration
by parts to reach the discrete Sinc-Galerkin system. Again, both the patching
and overlapping methods for domain decomposition applied to Poisson’s equation
require the addition of boundary basis functions. In the example given, the domain
is split only in the z direction, so there is no need for boundary basis functions in
the y variable. The extra basis functions in the x variable are the same ones used
in §3.
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ExampLg 4.1. Consider the problem

—Au(z,y) f(=z,9) ,

It

(z,y) € 2= (-1,4) x (0,1)

u(z,y) = 0, (z,y) €09,

where f(z,y) is chosen so that the true solution is given by
VIVEFI@— 921 - y).

[-1,4] x [0,1] is split into the two overlapping subdomains
0! = [-1,1]x[0,1] and Q2 = [.9, 4] x [0, 1] or the two non-overlappinng subdomains
Q! = [-1,1] x [0,1] and O = [1,4] x [0,1] . In this example M = M, = M, and
N = N; = Ny. A graphical representation of the results is found in Fig, 2, while
the numerical errors are reported in Table 2. The error columns are analogous to
those reported in Example 3.1. In spite of the steep solution along the = and y axes
the convergence is rapid.

u(z,y) =
Here the domain 2 =

a. Approximation for M=10 b. Contour Plots of Approximations
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FIGURE 2. Patching results for Example 4.1. Fig. 2a shows the
solution computed by the patching method for A = 10. Fig. 2b
shows contour plots of the solutions computed by the patching
method versus the true solution. The contour levels are .2, .4, .6,
and .8.

TABLE 2. Error in overlapping and patching methods for Example 4.1.

Overlapping Patching
M=N_|_ &l 5] 2 1Zs]
2 3.7729¢ — 01 3.5832¢ — 01 || 7.5272e — 01 6.4327e — 01
4 2.3657e — 01 2.4320e — 01 || 2.3659¢ — 01 2.3423e — 01
6 1.5204e — 01 1.5612¢ — 01 || 1.5282¢ — 01 1.5610e — 01
8 1.0619¢ — 01 1.0813e — 01 || 1.0619¢ — 01 1.0813e — 01
10 7.6184e — 02 7.7340e — 02 || 7.6181e — 02 7.7340e — 02
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- 5. Conclusion

The performance of the Sinc-Galerkin method in conjunction with both patch-
ing and overlapping domain decomposition methods is quite good in simple cases,
as-seen in Examples 3.1 and 4.1. In these test problems, the resulting systems
were solved directly using MATLAB. The large size of the matrices in the two-
dimensional case became prohibitive after M = 10. The results of Example 3.1
have been confirmed using FORTRAN on a CRAY Y-MP. Work is in progress to
convert the codes for Poisson’s equation to FORTRAN so that larger systems may
be run for Example 4.1. An iterative method for solving these problems would be
a logical next step.
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