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Finite-Element/Newton Method for Solution of
Nonlinear Problems in Transport Processes
Using Domain Decomposition and Nested
Dissection on MIMD Parallel Computers

M. REZA MEHRABI AND ROBERT A. BROWN

ABSTRACT. Finite-element discretizations of nonlinear steady-state prob-
lems describing transport processes are solved by Newton’s method using
a multilevel algorithm for direct factorization of the Jacobian matrix. The
factorization algorithm is based on incomplete nested dissection and do-
main decomposition to distribute the equations to processors of a MIMD
parallel computer, where the Jacobian matrix is concurrently factorized.
Sample calculations for two flow problems show reasonable computation
speeds and speedups on an Intel iPSC/860 hypercube. Moreover, the exe-
cution times for these codes compare favorably with the performances for
conventional finite element software on a serial, vector supercomputer and
for a highly parallel commercial program for solving incompressible flow
problems on a MIMD parallel computer.

1. Introduction

The development of efficient and robust algorithms on parallel computer ar-
chitectures is an outstanding problem for solution of the wide variety of problems
in fluid flow and heat and mass transfer that are of interest in modeling mate-
rials processing and manufacturing. The mathematical models for this class of
problems are typically composed of a group of differential equations, algebraic
equations and integral constraints. For steady-state (time independent) models,
finite element or finite difference discretization of these models leads to large sets
of nonlinear differential equations with highly structured coupling between the
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variables. These dependencies are naturally asymmetric: the linearization of the
nonlinear equation sets leads to asymmetric Jacobian matrices. For serial, vector
computers, Newton’s method, coupled with direct LU-decomposition, has proven
to be an efficient method for solution of these nonlinear equation sets, at least
for the discretization of problems in two space dimensions, where the structure
of the nonzero entries in the Jacobian matrix makes direct LU-decomposition
reasonably efficient in terms of operation count and memory usage. Indeed,
finite-element /Newton algorithms have been used to solve an enormous variety
of transport problems and are the basis of several commercial computer codes
used for this purpose. The popularity of this algorithm comes from the robust-
ness of Newton’s method for converging to the solution of extremely nonlinear
problems and also from the availability of continuation methods, based on the
computation of the factors of the Jacobian matrix [27, 17], for mapping out
multiple solutions. :

The goal of the development of the algorithm described in this paper is to
extend finite-element/Newton algorithmns for the solution of transport problems
to MIMD parallel computers like the Intel iPSC/860 hypercube available to our
research group. The major effort associated with this endeavor has been the
development of a an LU-factorization algorithm for the solution of large, sparse,
asymmetric linear equation sets based on domain decomposition and nested dis-
section for partitioning the equations to the processors of the MIMD computer.
The algorithm used here and described in detail by Mehrabi and Brown [22]
is based on dividing the geometrical domain recursively into subdomains and
separators using nested dissection [8, 9] and assigning subdomains and associ-
ated separator data to each processor. The algorithm described in [22] extends
the work of Lucas et al. [19] for symmetric, positive-definite matrices to avoid
duplicate storage, to allow asymmetric matrices and to allow partial pivoting
during factorization. The algorithm stores the lower and upper triangular forms
and performs forward and backward solutions separately.

The LU-factorization algorithm is described in more detail in Section 2. Two
test problems that arise in the solution of isothermal and nonisothermal incom-
pressible flows are described in Section 3; these are the two-dimensional flow
of an incompressible fluid in a lid-driven cavity and the natural convection mo-
tion of a Boussinesq fluid in a two-dimensional cavity with differentially heated
lateral walls. Both problems have been widely used as test problems for incom-
pressible flow calculations and become computationally difficult as the intensity
of the convection is increased. This occurs with increasing the Reynolds num-
ber for the lid-driven cavity problem [24, 21] and with increasing the Grashof
number for the thermal convection problem [6]. Because the finite element dis-
cretizations used to create the discrete equation sets are standard, we do not
focus on the accuracy of the computations, but rather on their efficiency com-
pared to implementation of the finite-element/Newton method on a serial, vec-
tor supercomputer and o a highly parallelizable spectral element code based on
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FIGURE 1. Nested dissection ordering of a rectangular two-
dimensional domain. A binary reflected Gray code is used for
numbering the subdomains to reduce hypercube communica-
tion [4].

pseudo-time-stepping to compute the steady-state solution.

2. Concurrent LU-Factorization and Storage: CFS

For simplicity, we consider a mathematical model for transport processes de-
scribed in a two-dimensional geometrical region represented by the rectangular
domain shown in Fig. 1. This region is partitioned into P quadrilateral subdo-
mains, each of which is assigned to a processor of the MIMD parallel computer.
The equations that correspond to each subdomain are ordered using incomplete
nested dissection [9]. Then, each point on the elimination tree for the nested
dissection ordering corresponds to a supernode or a group of equations [22].

In general, the mathematical model may be composed of differential and al-
gebraic equations, integral constraints and boundary conditions. Finite element
methods are used to define local approximations to the field variables and to dis-
cretize the partial differential equations and boundary conditions. The details
of these discretizations are not important for the discussion here, as long as the
approximations to the field variables have compact support within the elements.
The discretized problem is a large set of nonlinear algebraic equations that is
represented as

(2.1) R(x)=0

where R € RY and x € RV, where N is the total dimension of the discrete field
variables. The variables and equations are associated with specific processors
according to x = (x@,x®,x® . x(P)) and R = (R, R, R, BRI,
where the dimensions of the variables {x(¥} and equations {R(®} associated
with each processor depend on the number of finite elements allocated to it.
We solve egs. (2.1) by Newton's method using direct LU-decomposition of the
Jacobian matrix at each Newton iteration. The Jacobian matrix is written as a
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partitioned matrix among the P-processors as

(#)  3(ie)

(22) = [ g(ei) g(ee) ]

where the Jacobian matrix is organized into data that is totally interior to each
subdomain — the interior matrix {J(9, J(¢) J@e)} — and data that corresponds
to the borders shared by two or more subdomains, which are the separators in
Fig. 1 — the exterior matrix J (e€) | The exterior matrix is partitioned among
adjacent processors to minimize communication and memory requirements. The
data structures used for storage of the interior and exterior matrices are described
in [22]. Matrix data corresponding to each supernode is stored in block from to
facilitate vectorization and pivoting during the LU-factorization.

The algorithm for the LU-decomposition of the matrix, eq. (2.2), described
by Mehrabi and Brown [22] is operationally equivalent to direct computation
and factorization of the Schur complement. The formation of the Schur com-
plement corresponds to the LU-decomposition of the interior matrices of each
processor {J (i)} and to the update of the exterior matrix J(¢€) by those factors.
Data is communicated from each processor to form the exterior matrix using the
fan-in method of Ashcraft et al. [1]. A hybrid fan-in/fan-out algorithm is used
for updating the exterior matrices during factorization and subsequent updat-
ing. As discussed in [22], the fan-in and the hybrid fan-in/fan-out methods of
update reduce the number of messages and the total message volume for LU-
decomposition by approximately factors of 2 and 3 over the algorithm of Mu and
Rice [23] developed using a grid-based, subtree-subcube assignment of exterior
matrix elements to the processors.

The computer code was written in standard Fortran and C with only machine
specific statements for send, receive and synchronization. The code was imple-
mented on a 32-node Intel iPSC/860 hypercube with 8 Mbytes of memory per
processor and compiled with Intel’s ¢f77 and icc compilers. Hand-coded Level-1
BLAS by Kuck and Associates [18] were used to increase the speed. Each i860
node executes the LINPACK benchmark at 9.5 MFLOPS and the machine has a
ratio of speed for communication to computation of 1:100, which lowers the par-
allel speedup when communication is large. Here the speedup is defined as the
speed of a calculation on P-processors divided by the speed on a single processor
of the same machine, where the single processor solves a problem of similar size
to the problem of each of the P-processors. Below we report speedups for the
LU-factorization, for forward and backward elimination steps of the solution of
linear equation sets and for the formation of the matrix and forcing vector at
each Newton iteration.

3. Test Problems and Results

The two test problems are shown schematically in Fig. 2. Each of these
problems is described below.
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FIGURE 2. Schematic diagrams of the flow geometries for the
problems of flow in a (a) lid-driven cavity and (b) thermal con-
vection in heated side-wall cavity. The boundary conditions for
each flow problem also are shown.

3.1. Lid-Driven Cavity. Consider the steady-state incompressible flow of a
Newtonian liquid in a two-dimensional cavity with the bottom surface moving, as
shown in Fig. 2a. The Navier-Stokes equations are made dimensionless with the
speed of the bottom surface and the height of the cavity to give the dimensionless
equations

(3.1) Rev-Vv = Viv-Vp
(3.2) Vv = 0

where the boundary conditions are shown in Fig. 2a. In addition to setting both
components of velocity on each surface, the pressure is specified at a point to set a
datum level. The problem is specified in terms of two dimensionless parameters:
the Reynolds number Re, which scales the importance of fluid inertia, and the
aspect ratio of the cavity A, which scales the cavity width to its height. Including
a nonzero value of Re makes the problem nonlinear and the Jacobian matrix
asymmetric. The calculations presented here are meant only as a demonstration
of the parallelization of the algorithm; they were performed with parameter
values of A=4 and Re=1. Calculations with large Re are feasible with the finite
element meshes used here.

The egs. (3.1)-(3.2) are discretized using a standard mixed finite element
method for the Stokes problem [3]. The velocity components are interpolated
using Lagrangian biquadratic polynomials defined on each element and the pres-
sure by bilinear polynomials. The weak forms of the egs. (3.1)-(3.2) are written
using the isoparametric mapping to a unit element and the two-dimensional
integrals are computed numerically using 9-point Gaussian quadrature. The
Newton’s iteration was started with the initial guess of no flow in the cavity and
converged to an absolute tolerance of 10~12 in 4 iterations. A sample solution for
a mesh of 36 elements in the vertical direction and 76 elements in the horizontal
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mesh domain decomposition
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FIGURE 3. Sample mesh, subdomains, velocity components and
pressure field for the flow in a lid-driven cavity. Calculations are
for a 36 x 76 element mesh with N=25,000 degrees-of-freedom
(DOF’s) on 8 processors.

direction is shown in Fig. 3. Calculations with varying mesh size show a 5 percent
oscillation in the maximum magnitude of the velocity due to singularities in the
pressure field and its gradient at the corners where the moving and stationary
walls meet. It is possible to circumvent the convergence problem caused by these
singularities by changing the boundary conditions in the corners; however, we
did not attempt to do so because we are only interested in the performance of
the algorithm at this point, not in the details of the flow field.

The computation times for formulation of the Jacobian matrix and forcing
vector and for LU-decomposition are shown in Fig. 4 for calculations with be-
tween 1 and 32 processors (P) and discretizations resulting in 4,000 to 80,000
degrees-of-freedom (DOF’s). Two features are important. First, the time for
calculation decreases proportionally to the number of processors, showing good
parallel scaling for both operations. For the largest problem (N=80,000), the
time for formulation (8.5 s) is a fraction of the time needed for LU-decomposition
(28 s). The total time for a Newton iteration is the summation of these times
with the time for forward and backward solution of the triangular equation sets.

For the calculation with N=80,000, this is
Total Time

Newton Iteration

= 8.5 s (Formulation) + 28 s (LU-Decomposition)

1.1 s (Forward Elimination)
0.6 s (Backward Elimination)
38.2s

nm+ +
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FIGURE 4. Execution times for (a) formulation, (b) LU-
decomposition, (c) forward elimination and (d) backward elimi-
nation for solution of the lid-driven cavity problem as a function
of problem size (V) and number of processors (P).

where formulation represents 22 percent and LU-decomposition 73 percent; the
other two steps represent 3 and 2 percent of the total computation time, respec-
tively.

The low percentage time spent performing the forward and backward solution
algorithms offsets the poor parallelization of these two algorithms, as is well
known; e.g. see Lucas et al. [19]. As seen in Fig. 4, the performance of both
algorithms degrades with increasing the number of processors for a constant
problem size (V) because of the increased communication needed in these steps
of the algorithm.

The lid-driven cavity problem was used as a benchmark to establish the per-
formance of the finite-element/Newton method using the CFS algorithm for
solution of linear equation sets relative to the finite-element /Newton method
implemented using a frontal solution method [16, 14, 15] on a vector super-
computer. Two sets of calculations are reported. In the first, both the CFS and
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TABLE 1. Comparison of finite-element/Newton method using
the CFS LU-decomposition software and the serial frontal solu-
tion algorithm. The domain is dissected 6 times by CFS. Both
programs are run on a single, dedicated processor of a Cray

X-MP.
Quantity Serial Frontal Code | CFS Code
Time for Newton
Iteration (s) - 162 144
Time for Solution (s) 900 780
Speed for
LU-Decomposition
(MFLOPS) 110 45

frontal algorithms are run on a single processor of the Cray X-MP computer at
the MIT Supercomputer Facility to establish the advantages of the incomplete
nested dissection algorithm relative to the frontal technique outside of the con-
text of the parallel computer. In the second calculation, the CFS algorithm run
on the Intel iPSC/860 is compared to the frontal algorithm running on the Cray
X-MP.

The comparison between the frontal version of the finite-elernent /Newton
method and the CFS implementation on the Cray X-MP is summarized in Ta-
ble 1 for a calculation with a 68 x 68 mesh, giving N=42,000; the speeds for
the two codes are included there. The speed for the frontal code is taken from
diagnostic software supplied by Cray. The speed for the CFS code is calcu-
lated directly by counting the number of operations and dividing it by time.
The frontal code uses Level-1 BLAS routines in the innermost loops of the LU-
decomposition routine and runs at 110 MFLOPS on the Cray. By comparison,
no explicit attempt has been made to vectorize the CFS code on the Cray; as
a result it executes only at 45 MFLOPS. The test run by CFS is dissected 6
times, i.e. into 28 sections. Further dissection degrades this speed more because
of smaller length of vectors and the larger overhead of integer addressing. Even
though the CFS routine is not as fast as the frontal solver, it still executes in
a slightly lower time, because of the lower operation count associated with the
incomplete nested dissection ordering of the matrix {11, 10].

The comparison between the frontal version of the finite-element /Newton
method running on the Cray X-MP and the CFS version running on the 32-
processor Intel iPSC/860 for a discretization with N=80,000 (64 x 136 elements)
is summarized in Table 2. Most significantly, the CFS version is almost 10 times
faster for performing the same calculation. The Intel machine is performing
at half of the maximum speed of 32 x 9.5=304 MFLOPS estimated from the
LINPACK benchmark run on a single processor.
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TABLE 2. Comparison of finite-element /Newton method using
the CFS LU-decomposition software on a MIMD computer,
where each subdomain is dissected 6 times, and the frontal im-
plementation of LU-decomposition on a serial, vector supercom-
puter.

Quantity Serial Frontal Code on a CFS Code on 32-
single processor of Cray X-MP | Node Intel iPSC /860

Time for Newton
Iteration (s) 273 38
Time for Solution (s) 1800 180

3.2. Thermal Convection in a Cavity with Heated Sidewalls. The
geometry for this problem is shown schematically in Fig. 2b. The equations are
made dimensionless with the height of the cavity, the temperature difference be-
tween the hot and cold walls and the buoyant velocity to yield the dimensionless
momentum, continuity, and energy equations

(3.3) VGrv:-Vv = V>-Vp+VGre, T
(3.4) Vv = 0
(3.5) VGrv.-VT = —Pl; ViT

which are expressed in terms of the Grashof number (Gr), the Prandtl number
(Pr) and the aspect ratio A of the cavity. In eq. (3.3), e, is the unit vector in the
y-direction. The boundary conditions for the velocity and temperature field are
shown in Fig. 2b; here the temperature field along the horizontal surfaces has
been specified as a linear function of position to match the temperatures at the
two vertical surfaces; these conditions are the same as those used by others [6]
in the specification of this problem as a test for algorithms for computation of
natural convection.

Equations (3.3)-(3.5) are discretized using a standard mixed finite element
method for the natural convection problem [12]. The velocity components and
the temperature are interpolated using Lagrangian biquadratic polynomials de-
fined on each element and the pressure by bilinear polynomials. The weak form
of the egs. (3.3)-(3.5) is constructed in a similar way to what was described for
the lid-driven cavity problem.

Calculations were carried out using the parameter values of A=4, Przﬂ.(.)ls
and Gr=20,000 to demonstrate the robustness of the algorithm for computing
a highly nonlinear steady-state. Setting the Prandtl number on this low value
makes the time scales for heat and momentum diffusion very different and mfa.kes
this computation particularly hard for any algorithm based on a pseudo—tm%e.
stepping procedure for computing the steady-state solution. The Newton’s it-
erations converge in 8 iterations starting with the converged solution for A=4,
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FIGURE 5. Sample mesh, subdomains, velocity components,
temperature field and pressure field for the thermal convection
in a cavity with heated sidewalls. Calculations are for a 16 x 64
element mesh with N=14,000 degrees-of-freedom (DOF’s).

Pr=0.015, and Gr=>5,000 as the initial approximation, which in turn converges
in 5 iterations from the no flow state as the initial approximation. The solution
contours computed with a mesh of 16 x 64 elements are shown in Fig. 5 and
compare well with solutions reported by others [5, 2] for this same flow state.

The speedups associated with the calculations on the Intel iPSC/860 are
shown in Fig. 6 for the formulation and LU-decomposition as a function of the
DOF’s and the number of processors P, The efficiency is approximately 0.85
for the formulation and 0.65 for LU-decomposition; both values are essentially
independent of the problem size.

The computational efficiency of the finite-element/Newton method for so-
lution of this thermal convection problem was compared directly to a highly
optimized commercial incompressible flow code, Nekton, which uses spectral el-
ement discretizations coupled with a semi-implicit temporal operator splitting
to compute steady-state solutions as the asymptotic limit of transients [20, 25,
13, 26, 7). The operator splitting method requires only the solution of positive-
definite linear equation sets at each time step. These systems are solved using
& conjugate gradient algorithm with a two-level preconditioner. The results of
the comparison tests run on the Intel iPSC/860 are summarized in Table 3. The
CFS calculation is nearly 7 times faster. The comparison has been based on the
solution of discretizations of similar size (V). For this discretization, the spec-
tral element representation (11th-order polynomials for velocity and temperature
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FIGURE 6. Speedups for (a) formulation, and (b) LU-
decomposition for solution of the thermal convection problem
as a function of problem size (V) and number of processors (P).

and 9th-order for pressure) is much more accurate than the finite element ap-
proximation. However, the CFS algorithm also is applicable to spectral element
discretizations and will yield improved computation rates because of the reduced
size of the exterior matrix relative to the interior matrix. A direct comparison
on spectral element calculations will be reported later. The two test calculations
reported here make a reasonably fair comparison.

4. Discussion

The calculations presented here demonstrate that the finite-element/Newton
method coupled with the CFS algorithm for LU-factorization is a robust and
efficient method for the solution of two-dimensional nonlinear transport problems
using MIMD parallel computers. We believe that the utility of the method will
be even greater for problems with more complicated physicochemical processes,
such as complicated kinetics, radiative heat transfer and nonlinear constitutive
behavior, that are present in many materials processing problems of interest.
The results show that the speedup associated with the LU-decomposition is
not particularly high; it is shown to be 0.65 for 32-processors and estimated
to be as low as 0.5 for 512-processors. However, the robustness of the LU-
decomposition for solution of the linear equation set and the rapid convergence
of Newton’s iterations for nonlinear problems makes the finite-element/Newton
method a viable algorithm for solving any problem that can be fit into memory
of the MIMD computer. Current machine sizes limit this approach to large
two-dimensional and small three-dimensional problems.
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TABLE 3. Comparison of finite-element/Newton method based
on CPFS algorithm with Nekton, a spectral element code based
on semi-implicit, pseudo-time-stepping method with precondi-
tioned conjugate gradient method. Both calculations were run
on Intel iPSC/860. Each subdomain is dissected 6 times by
CF8. For this calculation Gr=1, Pr=0.01 and A=4.

Quantity Nekton Finite-Element /Newton

CFS method
Steps/Iterations 100 time steps 3 Newton iterations
Mesh 8 x 16 spectral elements | 48 x 96 finite elements
Order of Velocity: 11 Velocity: 2
Approximations Temperature: 11 Temperature: 2

Pressure: 9 Pressure: 1

DOF’s 58,000 61,000
Number of Processors pP=8* P=32
Solution Time for P=32 800 120

* Solution time on P=32 estimated by dividing time on P=8 by 4.
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