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ABSTRACT. This paper describes an algorithm for the solution of a system
of nonlinear equations F(z) = 8, where F = (f1,... ,fn): D CR™ — R"
and D is a compact domain, given that any of the functions f; is monotonic
when restricted to any single variable at an arbitrary point. The algorithm
finds an approximation of the solutions as a union of m—dimensional in-
tervals. The computation is based on reduction of the box containing all
the solutions, its bisection, and elimination of subintervals which do not
contain a solution. The algorithm does not require computation of partial
derivatives or their approximations. Its use is illustrated on a model case.

1. Introduction

Let FF = (f1,...,fa) : [a,b] C R™ — R”™ be a continuous function. We
will consider a generalized bisection method to approximate, with certainty, all
solutions of a nonlinear system

(1.1) F(z) =4,
where 6 = (0, ... ,0), given that

(12) Aéejfi(x) i Aﬁejfi(y) Z 07
forall §>0,1<i<n, 1<j<m, =,y €la,b,

where Ay, f(z) = f(z + h) — f(z) and €’ is the j-th unit vector.
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Generalized bisection methods to solve (1.1) can be described using a root
inclusion function Tr (defined formally in [4]) with values true, false, and
unknown, which has the following properties [5]:

if Tp(S)=true then there is a unique solution of (1.1) within S.

if Tr(S)=false then there is no solution of (1.1) within S.

The template of a generalized bisection method can then be written as follows:

Input: Bounded domain S C R™.
" (i) if Tr(S) = false then the result is .
(ii) (optional)
Reduce the domain § to S’ C S such that
{z; F(z) =0,z € S} = {z; F(z) =0,z € §'}.
(iii) if diam(S’) or sup{||F(z)||;z € S’} are sufficiently small,
then 9’ is the result,
else
(a) Split S’ into two subdomains Sy, S.
(b) Compute solutions on S; and S, separately, using this algorithm.

Current bisection methods to solve (1.1) [1-6] use the Jacobian matrix of F,
or its approximations, to compute T#(S). The method presented here does not
require computation of any derivatives, taking advantage of the restriction (1.2)
on the class of functions considered. Our rooct inclusion test has only two values
(false and unknown). The refinement of distinct solutions of (1.1) is done
by customizations of a precision parameter of the algorithm, instead of testing
whether T (S) = true.

2, The algorithm

The following is a recursive algorithm to solve problem (1.1), given (1.2). The
algorithm contains a non-sequential loop (“for all”), instances of the body of
which can be computed in any order. The algorithm can be efficiently run in
parallel, as it decomposes the computation into independent subproblems.

DEFINITION 2.1. We define norm
llzllar = max | ;| for allz e R*,k=1,2,...
Algorithm D(S, F¢, 6);
Input: m—dimensional interval § = [a,b] C R™, function F = (f1,... ,fa) : S — R?,

and £,6 > 0.

(i) Reduce the m—dimensional interval [a,b] = [(a1, ... , am), (b1, - - , bm)],
preserving all the roots of F' on [a, b]:
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repeat
al:=a, t?:=b,
for all (4,7) € {1,... ,n} x {1,... ,m} do

if f; does not have a root in [a, b]

then return @,

else a; :==min {z;;2 = (21,...,Zm) € [a, B}, fi(z) = 0},

b; :=max {z;;2 = (T1,... ,2m) € [0, Y], fi(z) = 0},
until fla—a s <6 A [[6—8"as < 6.
(ii) Test whether ||F(z)l|ar < € on [a,b]:

ifforeach 1<i<n:| r{mg;fz(a;) L rflzz)]cfz(m) <e

then return [a,b].

(iii) Divide [a, b] into two parts:

Choose k € {1,... ,m} such that | ap — b | = max [a; —b; |,
j=1,..,m
ar + b
So:= la, (b1,. .- ,bk—-ly'"k—2—kabk+17~~- y b))l
ap + b
S1:= [(aly--- s Bk—1, —k_2'—]i7ak+17‘f . ,G,m),b],

return D(Sy, F,¢,8) UD(Sy, F g, 6).

To complete the specification, we describe methods to compute expressions
in steps (i) and (ii) of algorithm D. The following theorem gives a recipe for
computation of the minima and maxima in step (i). The problem is reduced to
the calculation of the minimal root for a single-variable monotonic continuous
function on an interval of finite size, which can be done by bisection. The com-
putation of a minimum only is considered in the theorem, as the corresponding
maximum can be computed as

ma,x{mj;_f[; & [a,, b],f,,’(:l:) = O} = -min{mj;w S [—a, —b],fz-(—:z:) = 0}

THEOREM 2.1. Let f : [a,b] € R™ — R be a continuous function, which
Julfills (1.2), 5 € {1,... ,m}, and let As.i f(x) 2 0 for all § > 0. Let us define

e, = by if Asecflx) =0 onla,b], for all § > 0,
= aqap otherwise,
(k=1,...,5-1,7+1,...,m),

¢.7(t) = f(ch'“ acj——ht:cj-}‘l,"- 5cm)-



280

Then

PETR MEJZLIK

(i) ¢; is continuous and non-decreasing on |a;, b;].

(i)

If f has a root within |a,b], then
min{z;; % € [a,b], f(z) = 0}= min{t; ¢;(t) = 0, € [a;,b;]},
if ¢; has a root in [a;,b;],

=a; otherwise.

PROOF.

(1)

(i)

O

The continuity of ¢; follows directly from the continuity of f. To
prove that ¢; is non—decreasing; it is sufficient to note that by (1.2)
the term As.; f(z) does not change sign for any § > 0, = € [a b, and
sgn(Ases ¢ (@) = sgn(Ases f(x)).

From the definition of function ¢; we see that

(2.1) ¢i(x;) > f(z) for all z € [a,b].

Let z% = min{z;; z € [a,b], f(z) = 0}. Then from the definition of ¢; it
follows that =7 < min{t; ¢;(t) = 0, € [a;,b;]} (otherwise there would
be some ¢ € [a;, 2%) such that ¢;(t) = f(c1,... ,¢j—1,%,¢j41,6m) = 0).
If ¢;(x}) = 0, then clearly

min{z;; € [a,], f(z) = 0} = min{t; ¢;(t) = 0, € [ay, b;]}.

If ¢;(z}) # 0, then ¢;(t) > 0 for all 2§ < ¢ < b;, which follows from
part (i) of this theorem and from (2.1). There is also ¢;(t) > 0 for
aj <t < x7, because #(t) # 0 on [a;, z}] by the definition of ¢;. Thus,
{t;:6;(t) = 0,1 € [a;,b]} = 0.

In the case when Ag,; f(z) < 0, we can compute the minimum in step (i) of
the algorithm as min{z;;z € [a,b], fi(z) = 0} = min{z;;z € [a,b], - f;(z) = 0}.
The term on the right side can be evaluated by Theorem 2.1 because
A,sej (—f(:l:)) = —A5ej f(:E) > 0.

From Theorem 2.1 it is clear that in step (ii)

|I[f;a}]>](fz'($)l = ¢1(b1) if Ases f(z) 20 0n [a,b],

= ¢1{(a;1) otherwise.

] I[Ilig}l fi(z) | can be computed similarly.

3. Convergence

THEOREM 3.1. Let F : [a,b] C R™ — R" be a continuous function, which
fulfills (1.2), and lete,§ > 0. Let S* be the output of algorithm D for F, [a, b],¢, 6,

i.e., §*

= D(F,[a,b],&,8). Then

(i) S* contains all the roots of F on [a,b].

(if)

HF(@)ar < € for all x € S*.
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PROOF. Both parts of the theorem follow directly from the iterational part
of algorihm D and from the definition of ||.||ps. O

The following theorem shows that it is always possible to distinguish between
two distinct solutions of (1.1) using a sufficiently small parameter £ in algorithm
-D.

THEOREM 3.2. Let F : [a,b] C R™ — R™ be a continuous function, which
Julfills (1.2), § > 0, and let 0 ¢ F(|a,b]). Then there is € > 0 such that
D([a,b], F,&,6) = 0.

PrROOF. The interval [a,b] is a compact set, which implies that F([a,b]) is
also compact, because function F' is continuous. The norm }|.Jj 37 has a minimum
on F([a,b]), as ||.]|a is continuous on R”. Let us have

e = min{|lyllar;y € F(la,b])} = min{||F(z)|ls;z € [a,b]}.

Then & > 0, as F(x) = 6 has no solution within [a,b]. From Theorem 3.1(ii)
we have

F@) i < ¢ = min{||F(z)||m;x € [a,b]} for all 2’ € D(F, [a,b],¢,6).
Thus, D(F, [a,b],£,6) =0. O

4. Example

‘We illustrate the method with a system of two nonlinear inequalities:

1/z
4

(4.1) Y
% + y2

IA A

for z,y € [0.01,2].

It can be seen that the set of solutions is the “lens” in Figure 1. The system
(4.1) is equivalent to the following set of equations:

(4-2) fl(w’y) = 0
f2($7y) = 0

where
filz,y) = O foryzé,

= 1 —1y otherwise,
T

folz,y) = 0 forz®+y® <4,
= z2+y* -4 otherwise.
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The results of computations of solutions of (4.2) by algorithm D are shown

in Fig. 1.

(5]
3

[

P2 S—

(a)

(b)

FI1GURE 1. Output of algorithm D for for the example system.
(a) e=0.5, § = 00, (b) £ = 0.05, § = 0.
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