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Semiconductor Device Equations by a
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Abstract

A block nonlinear Gauss-Seidel procedure is employed to decouple the full
system arising from the finite element approximation of the steady-state
semiconductor device equations. At each iteration, a Neumann-Neumann
domain decomposition method is applied to solve the linearized equations
yielding electric potential and free carrier densities. Numerical results for
one dimensional realistic test problems are given.

1 Introduction

The aim of this paper is to study a typical test device in semiconductor modeling,
namely, a one-dimensional p-n diode. In section 2 we introduce the well-known
drift-diffusion equations (see, e.g., [4]) that describe charge flow in a semiconduc-
tor device at steady-state conditions. The mathematical problem consists of a set
of three highly nonlinearly coupled equations in the unknowns (¥, 7, p), which are
respectively electric potential and carrier concentrations (electrons and holes).
In order to reduce the computational effort, a block nonlinear Gauss-Seidel al-
gorithm known in semiconductor literature as Gummel’s map [3] is considered
in section 3 to decouple the full system. The three resulting linearized equations
are suitably formulated and then successively solved by a Neumann-Neumann
domain decomposition method [1]. Concerning the spatial discretization, we
respectively employ piecewise linear and exponentially fitted (& la Scharfetter-
Gummel [7]) finite elements to handle the electric potential equation and the
convection-diffusion equations for both electron and hole densities (see also (2]
and [6]). In the concluding section 4 we discuss several numerical results relative
to the study of the p-n diode at some working conditions of noteworthy interest.
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2 The drift-diffusion model for semiconductors

Steady-state charge flow throughout a semiconductor device in the one dimen-
sional case is commonly modeled by the following elliptic boundary value problem

(see, e.g., [4])

1 -9 =p 4) p=p,n,p)=(p—n+C)
(2) J,n = R(¢7 n,p) (5) Jp= ,u'n(nl - 'n"‘pl)
(38) J¥p=—R(¥,n,p) (6) Jp=—pp(0' +p¥)

The equations above represent the drift-diffusion model for a one dimensional
semiconductor device and can be solved in any open set { = (0, L) provided
by suitable boundary conditions.The unknowns (3, n, p) are respectively elec-
tric potential and free carrier densities (electrons and holes), so that (1) is a
Poisson equation and (2)-(3) are two continuity equations for electron and hole
current densities J,, and J,. These latter are, for a given electric field E = —¢/,
convection-diffusion equations with a (possibly) highly dominating transport in
thin regions across the so called p-n junctions. The functions p(x), C(z), pn p,
and R are respectively the space charge density, the doping profile, the carrier
mobilities, and the net recombination/generation rate. For more details on the
physical model, see [4] and the references therein.

Maxwell-Boltzmann statistics is assumed to hold, and therefore

(0 n=pne¥ (8) p=ppe ¥

where p,, ;, are usually known as Slotboom variables [8].

The choice of such a model problem makes the algorithmic effort relatively
easy while retaining a wide range of generality, since the basic physical properties
of the solutions in more complex and realistic geometries are well reproduced by
the one dimensional approximation. A more detailed description of the mathe-

matical model in the two dimensional case and of the numerical aspects is given
in 4] and [5].

3 The solution algorithm

When facing the numerical approximation of (1)-(3), the most critical aspects
are:

e the need of finding an effective linearization procedure that allows the
decoupling of the three equations;

e the presence of sharp interior layers that demands use of domain decom-
position methods and upwind finite elements.

On the ground of the numerical experiments performed, we propose the fol-
lowing solution algorithm, which is long established in semiconductor device
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modeling and is commonly known as Gummel’s map [3]. It reduces the over-
all computational effort by forcing a decoupling in system (1)-(3) and leading
to the successive solution of one nonlinear Poisson problem and two linearized
convection-diffusion equations.

Gummel’s map reads as follows.

Outer iteration: Loop on k until convergence

e Construct Newton iterates {15} for
the nonlinear elliptic boundary value problem

9) { —¢"* = (e — phleV" 1 C(2)) = plo, ¥F(@)),  O<a<L

PE0) =40,  PR(L) =y
such that
Jim vF, = o+

Inner iteration:

o for each m solve the linearized problem by the
Neumann-Neumann (NN) multidomain method proposed in [1].

e Solve the two linear drift-diffusion problems

(10 _(#ﬁ(n/k _ nkd)lk))/ — —R(’t/}k,nk—l,pk"l), O<z<lL
) n*(0) = nyg, n*(L) = np,

(11) { —(up (@™ +p*™)) = —R(y*,n* 10", 0<e<L
PO =po, PL)=ps

for n* and p* by the NN multidomain method (upon ”symmetrizing”
the convection-diffusion problems)

The intermediate nonlinear step (9) provides a new electric potential 1/*+1 which
is plugged into the two convection-diffusion equations to be solved for the carrier
concentrations n*+! and pF*! respectively. The procedure is stopped as soon
as the variations of electric potential and carrier concentrations between two
consecutive iterations (for a suitable norm) fall below a fixed tolerance.

The finite element method is used for the spatial approximation, where piece-
wise linear and exponentially fitted (& le Scharfetter-Gummel {8G) [7]) shape
functions are respectively employed for electric potential and carrier densities
(see also {2] and [6]).

Use of a Neumann-Neumann domain decomposition method is motivated by
the strongly varying nature of the solutions of realistic semiconductor device
problems. Indeed, they typically exhibit very sharp interior layers across the p-n
junctions where convection dominates and whose position may be easily deter-
mined & priors, while they behave smoothly in the rest of the device domain. The
Neumann-Neumann domain decomposition method allows the solution of self-
adjoint boundary-value problems in regions partitioned into subdomains through
an iterative procedure among subdomains. At each step the updating is achieved
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Figure 1: Recursive partitioning algorithm to reduce to single interface problems

by solving independent subproblems with Dirichlet conditions; this phase is fol-
lowed by a correction yielding subproblems with Neumann conditions at the
interfaces among subdomains. The method is described in [1], where an acceler-
ation procedure relying on Conjugate Gradient (CG) iterations for the so called
Steklov-Poincare’s interface operator is also proposed.

‘We may interpret this algorithm at the continuous level by saying that, start-
ing from an initial guess u°, the NN method generates a sequence of approxi-
mants {u"} of the exact solution; such functions are continuous over the device
domain Q but, in general, will have discontinuous derivatives at the interfaces.
The Neumann step serves to smooth these irregularities by smearing the jumps
at each interface of the electric field and of the discrete current densities all over
the subdomains.

As for the numerical treatment of current continuity equations, there are two
conflicting needs to be satisfied, namely, the self-adjointness of the operators and
the computation of exponential terms arising from the change of variables (7)-(8)
that make these equations self-adjoint. The successful strategy (cf. [5]) consists
in modifying the standard Neumann-Neumann method in such a way as to solve
a series of differential problems having just one interface each, and, consequently,
only one degree of freedom. This kind of subproblem may be in fact easily solved
in a single iteration by the original domain decomposition procedure.

Actually, the starting coupled problem partitioned in N subdomains is re-
curstvely led to N/2 subdomains problems by an algorithm that systematically
eliminates the interfaces until single-interface problems are reached and eventu-
ally solved. This strategy is illustrated in figure 1 in the case of N = 4.

4 Numerical results

In this section we discuss some numerical examples relative to the simulation of
a one dimensional p-n diode with an abrupt doping profile C(z) and subject to
some different values of the biasing potential V, = V,, — V.., where V,,, V,,,, are
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respectively the external applied potentials at = = 0, L. We assume the device
length L = 10pm (junction at z = L/2) and the piecewise constant doping profile

~10'%em™ 0<z< i
() o) ={ Ty 45558

We show in figure 2 the numerical results relative to the simulation of the p-n
diode at the reverse bias V, = —15 Volt (i.e., V; < 0). Sharp.interior layers
across the junction are clearly exhibited by both electric potential and carrier
distributions; the former are due to the discontinuity in the doping profile C(z),
while the highly dominating transport E = —1/ around the p-n junction is
responsible for the latter. The main parameters of the simulation are sketched
in the headings, where IDOM is the number of subdomains, NP is the total
number of internal nodes and ITGLOB denotes the number of iterations on k
needed to achieve convergence of Gummel’s map. Notice the highly nonuniform
distribution of the mesh nodes over the device domain; the grid spacing has been
taken constant within each subdomain, being quite coarse in the lateral quasi
neutral regions and much finer in the depleted zone across the junction, where
the maximum variations of the solutions are expected.

We stress that the solution by the NN domain decomposition method of each
subproblem has always required a number of iterations as low as the number
of interfaces. We also remark the effectiveness of the SG finite elements in
reproducing the sharp interior layers exhibited by the carrier distributions.

Other examples of simulations of the p-n diode test device under different
biasing conditions are reported in [5], with special emphasis on the case of a high
reverse voltage V. The results show the quick convergence of the non linear block
iterative procedure, which turns out to be reasonably independent of the applied
voltage V,; further checks on the discrete distributions of electric potential and
carrier concentrations have also proved the accuracy of the method measured in
the sup-norm.

It must be pointed out that convergence of the Gummel’s map quickly wors-
ens as the reverse bias assumes increasing negative values, until it definitevely
stops as V, approaches the breakdown voltage (see, e.g. [9]). The numerical solu-
tion of the drift-diffusion system in this physical situation is extensively addressed
in [5], where a very effective variant of Gummel’s map based on BI-CGSTAB
[10] preconditioned iterations is proposed.
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Figure 2: Potential and carrier distributions at ¥V, = —15 Volt
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