Contemporary Mathematics
Volume 180, 1994

Modeling with Collaborating PDE Solvers:
Theory and Practice

MO MU AND JOHN R. RICE

ABSTRACT. We consider the problem of modeling very complex physical
systems by a network of collaborating PDE solvers. Various aspects of this
problem are examined from the points of view of real applications, mod-
ern computer science technologies, and their impact on numerical methods.
The related methodologies include network of collaborating software mod-
ules, object-oriented programming and domain decomposition. We present
a domain decomposition approach of collaborating PDE solvers based on in-
terface relaxation. The mathematical properties and application examples
are discussed. A software system RELAX is described which is implemented
as a platform to test various relaxers and to solve complex problems using
this approach. Both theory and practice show that this is a very promising
approach for efficiently solving complicated problems on modern computer
environments.

1. Introduction

Modeling physical phenomena with scientific computing is an interdisciplinary
effort involving engineers, mathematicians and computer scientists. Practical
physical systems are often mathematically modeled by complicated partial dif-
ferential equations (PDEs). Their numerical solution requires high performance
computers, large software systems and efficient algorithms. The design of nu-
merical PDE algorithms must balance many factors. From the numerical anal-
ysis point of view, one often focuses on good approximation, fast convergence,
low arithmetic expense, and other mathematical properties. In practical appli-
cations, one should be able to handle the complexity and generality of PDE
problems. Among the major concerns for software development are software

1991 Mathematics Subject Classification. Primary 65N55, 65F10; Secondary 65Y05, 65¢20.

The first author was supported in part by the National Science Foundation grant CCR-
8619817 and the Hong Kong RGC DAG93/94.5C10. The second author was supported in
part by the Air Force Office of Scientific Research grants, 88-0243, F49620-92-J-0069 and the
Strategic Defense Initiative through Army Research Office contract DAAL03-86-K-0106.

The final version of this paper will be submitted for publication elsewhere.

1994 American Mathematical Society
0271-4132/94 $1.00 + $.25 per page

427

428 M. MU AND J. R. RICE

productivity, complexity, reusability, maintenance, portability, and other qual-
ity issues. Modern software technologies and concepts are needed. In addition,
the use of parallel éomputing leads to issues, such as parallel algorithms, com-
munication cost, and scalability. Obviously, many of these objectives conflict
with each other. The principal trade off is programming effort versus execution
time efficiency. We examine various aspects of the simulation problem from the
practical point of view. These considerations lead to the domain decomposition
approach which we call collaborating PDE solvers. It aims to solve complex
physical problems with the use of modern computer science technologies. It is
based on the classical relaxation idea by iteratively solving local problems and
adjusting interface conditions. A software system RELAX has been implemented
as a platform to support this approach. One can use this system to model com-
plex physical objects, specify mathematical problems and test various interface
relaxation schemes. It is shown that this approach is promising in both theory
and practice.

2. Collaborating PDE solvers

A physical system in the real world normally consists of a large number of
components. They have different shapes, obey different physical laws, and col-
laborate with each other by adjusting interface conditions. An automobile engine
system is such a typical example. Mathematically, it corresponds to a very com-
plicated PDE problem with various formulations for the geometry, PDE, and
interface/boundary condition in many different regions. Interface locations and
conditions may also vary, as in systems with moving interfaces. One can imagine
the great difficulty in creating a software system to model such a complicated
real problem. Therefore, one needs an effective software development mecha-
nism which first, is applicable to a wide variety of practical problems, second,
allows for the use of advanced software technologies in order to achieve high pro-
ductivity and quality, and finally, is suitable for some reasonably fast numerical
methods.

Notice that most of the physical systems in practical applications can be mod-
eled as a mathematical network. Here a network is a directed graph consisting
of a set of nodes and edges. If we represent each physical component in a system
by a node, then a pair of neighboring components are linked by an edge in the
graph, with the edge directions used to indicate the necessary information trans-
mission for the interface adjustment. Each node in the network is then assigned
a key to represent the local physical law for the corresponding component. For
numerical relaxation one may also assign certain weights to each edge in order
to provide detailed control for the interface adjustments, such as for boundary
values and their jumps across the interfaces. Moving interfaces are allowed in
this network specification.

Usually, individual compounents are simple enough so that each node corre-

COLLABORATING PDE SOLVERS 429

sponds to a simple PDE problem with a single PDE defined on a regular ge-
ometry. There exist many standard PDE solvers that are well developed and
can be applied to these local node problems. To solve the global problem, we
let these local solvers collaborate with each other by invoking an interface con-
troller. It collects boundary values from neighboring subdomains and adjusts
interface conditions according to the network specifications. Therefore, the net-
work abstraction of a physical system allows us to build a software system which
is a network of collaborating PDE solvers. These networks can be very big for
major applications. There are normally about 5 interfaces per subdomain. For
a highly accurate weather prediction, for example, one needs 3 billion variables
in a simulation with continuous input at 50 million places. This assumes a 3-D
adaptive grid, otherwise the computation is much larger. Very optimistically,
if one needs a new forecast every 2-3 hours, the answer is 100 gigabytes in size
and requires 80 mega-giga FLOPs to compute. Such a network roughly consists
of 3,000 subdomains and 15,000 interfaces. An “answer” is a data set that al-
lows the accurate approximate solution to be displayed at any place. It is much
smaller than the numerical solution from which it is derived. Another example
to consider is a realistic vehicle simulation, where there are pe;haps 100 million
variables and many different time scales. This problem has very complex ge-
ometry and is very non-homogeneous. The answer is 20 gigabytes in size and
requires about 10 tera FLOPs to compute. The network has 10,000 subdomains
and 35,000 interfaces.

A software network of this type is a natural mapping of a physical system. It
simulates how the real world evolves and thus normally produces a reasonable
solution. It allows various advanced software technologies to be applied to create
a high quality system in a very productive way. For instance, one can apply the
networking technology to efficiently integrate a collection of software components
into an entire system and to implement a neat and flexible system architecture
for the model and its interface connections. This implies the use of the software
parts technology that is the natural evolution of the software library idea with
the addition of software standards. It allows software reuse for easy software
update and evolution, which are extremely important in practice. The re:al
world is so complicated and diverse that we believe there are no monolithic,
universal solvers. Without software reuse, it is impractical for anyone to create
on his own a large software system for a reasonably complicated application. For
example, automobile manufacturers frequently change automobile models. Each
change normally results in a new software system. Recreating suc:h a éystem
could easily take several months or years. In contrast, the execu.tlon time fo
perform the required computation might only be a few hours. Notice .that such
a physical change usually corresponds to replacing, adding, or deleting a few
nodes in the network with a corresponding change in interface conditions. These
can be modular manipulations on a network that do not affect the majority of

the system components.

430 M. MU AND J. R. RICE

Object-oriented programming is a powerful software development methodol-
ogy well suited to such a software system. In this methodology each physical
component can be viewed both as a physical object and as a software object.
Actions and interactions of objects are clearly defined by the network. Two ba~
sic principles of object-oriented programming are data structure abstraction and
information hiding for each object. These principles are expressed here by the
local solvers and the interface conditions. In addition, this network approach is
naturally suitable for parallel computing as it exploits the potential parallelism
in physical systems. One can handle issues like data partition, assignment, and
load balancing on the physics level by the structure of a given physical system.
Synchronization and communication are controlled by the network specification
and restricted to interfaces of subdomains, which results in a coarse-grained com-
putational problem. This is suitable for today’s most advanced parallel super-
computers, such as the Intel’s PARAGON system and the Thinking Machine’s
CM-5. The network approach also allows high scalability. Finally, this network
approach naturally fits into the mathematical domain-decomposition framework
with the overall geometry being viewed as automatically partitioned into a col-
lection of subdomains. Note that subdomains and interfaces simply correspond
to the network nodes and edges, respectively.

There have been many types of domain decomposition methods proposed
over the past decade. Specific references to the literature are given in [2] and in
other volumes of these proceedings. However, not all of them are suitable for,
or directly applicable to, this network framework due to considerations from the
practical and software points of view. First, the artificial subdomain overlapping
introduced for mathematical convergence purposes obviously violates the basic
principles of object-orientation. Each software object should correspond to a nat-
ural physical component without knowing part of data structures of other objects
or exposing its local data structures to others. Second, it is not proper to apply
the algebraic type of domain decomposition methods that first discretize a PDE
problem on an entire domain and then partition the discrete system according to
the geometric decomposition. In fact, the network framework implies the prob-
lem partition on the continuous problem level so that PDE solution techniques
in different regions may be totally independent depending on local properties.
One may use finite differences for one subdomain, and finite elements or even
an analytic solution for another. In addition, the subdomain PDE operators are
not necessarily extensible to interfaces so that global discretization is not always
applicable. More importantly, the success of most of these methods relies on
finding a good preconditioner for the interface Schur complement matrix, which
is very difficult to do in practice for a complicated physical system. Another
well-known class of methods are motivated by observing that the global solution
of a Poisson equation on an entire domain is continuous on interfaces up to its
first derivative, i.e., Uand 8U/0n. In order to match the continuity for both U
and U /8n, one starts with an initial guess for U and 8U/9n on interfaces, takes

COLLABORATING PDE SOLVERS 431

them as boundary data to solve a Dirichlet or Neumann boundary value prob-
lem on subdomains, then updates interface values using the new solution data,
and iterates until convergence. A common approach is the alternating Dirichlet-
Neumann algorithm. This is a non-overlapping method. Generally speaking,
it converges slowly and may diverge, although preconditioning techniques may
be applied to improve convergence. Theoretically, it is rather difficult to under-
stand the convergence mechanism, especially when the so-called cross points are
bresent on interfaces. In addition, interface conditions in practical applications
usually appear in more complicated forms. Nevertheless, it is important that
this subdomain-iteration based approach best fits into the network framework
and is thus promising from the practical point of view. The challenge is then to
extend it to general interface conditions and to guarantee its fast convergence.

3. Interface Relaxation

We now present a general subdomain-iteration approach based on the classical
relaxation idea.

Let T';; be a typical interface, that is, the common boundary piece of two
neighboring subdomains §2; and 2y, ie., I'y; = 0 N 3QY;. Each subdomain
obeys a physical law locally. Namely, there is a PDE L; and function U; defined
in each € so that

(38.1) LiUy = fiiny for l=4,5.

Notice that the interface condition on I';; can usually be specified in the form

oU; U,
3:2) gij(l-]i,Up'a_n,‘a?J = 0.
In general, the left-hand side of (3.2) may also involve higher order derivatives.
Without loss of generality, we only consider first order derivatives. For example,
for the continuity conditions of the global solution and its normal derivative,

(3.2) takes the form

oU;, oaU;\?
U2 (Y _9YiY g
(3.3) U —U;)* + (o Bn)

For some physical phenomena we might have different conditions to be satisfied
on opposite sides of the interface so that the interface conditions need not b§ sym-
metric, i.e., we can have g;; # g;;. Denote by BV(U;,U;) = {U;, Uj, %%i, %}h’ii
the data set of boundary and derivative values of local solutions U; and U; on
T'i;. Equation (3.2) can then be viewed as a constraint on BV (U, Uj;).

We now describe a general relaxation procedure as follows. Suppose that we

have an initial guess for BV, denoted by BV°", which satisfies the constraint

432 M. MU AND J. R. RICE

(3.2) for all interfaces. For each subdomain, we solve the boundary value prob-
lems with the corresponding PDEs in (3.1) and by using part of BV°!¢ as the
boundary data. With the newly computed local solutions, denoted by Uj*** for
Q, we evaluate boundary values to get BV (U, Ur?) for all I';;, which is de-
noted by BV for brevity. In general, BV’ does not satisfy the constraint (3.2)
although part of BV°? may be preserved in BV’ as the boundary data used
in the local solve. The relaxation idea is to further change, i.e., to relaz, cer-
tain components in BV to obtain a new data set BV™¥ that (better) satisfies
the constraint (3.2). This leads to solving equation (3.2) for the correspond-
ing boundary components as the unknowns. The above two-phase procedure,
consisting of local PDE solve and constraint relaxation, defines a mapping from
BV®4 to BV™¥ Tterating this procedure until convergence, we obtain the
global solution that satisfies both the local PDEs and interface constraints.

It is easy to create an object-oriented implementation of this relaxation pro-
cedure. The actions defined on a subdomain object are: (a) solving a PDE
boundary value problem with the provided boundary data in BV from inter-
faces, and (b) evaluating boundary values of the resulting local solution. The
actions defined on an interface object are: (a) collecting boundary values from
neighboring subdomains, (b) checking for convergence by examining the inter-
face constraints, (c) relaxing the constraint to update BV, and (d) invoking local
solvers for neighboring subdomains.

There are various possible choices for the relaxation, depending on the bound-
ary condition type for each subdomain solve and the way of relaxing the interface
constraint. The alternating Dirichlet-Neumann approach is an example. An al-
ternative is to apply a smoothing procedure along an interface, which blends
the neighboring solutions to better satisfy the interface constraints along the
interface. It is also possible to apply least squares to perform an overdeter-
mined interface constraint relaxation rather than an exact relaxation. As usual,
one may derive a multi-step type of relaxer by introducing certain relaxation
parameters and taking a weighted average of previous and updated iterates.

We consider the following class of relaxers. First, we consider only stationary
relazers, those that use the same relaxation and PDE solution techniques at every
iteration. There are non-stationary relaxers of serious interest, such as those
that alternate between satisfying Neumann and Dirichlet conditions. Second,
we consider only relaxers that use values and derivatives of PDE solutions along
interfaces. That is, at each iteration a PDE is solved for U; in §; and the
boundary values of U} and its derivatives are the input to the relaxers. Discrete
versions of the relaxers may involve such values on or near interfaces.

We define this class of relaxers precisely as follows. Let I{l) be the indices
of those subdomains that are neighbors of subdomain [. Let the PDE problem
that is solved on €; be

COLLABORATING PDE SOLVERS 433
LlUlnew = fl in Ql,
(3.4) ByUpe® = by; onTy; for j € I(1),

Upe¥ satisfies the global boundary conditions on 89,

where Bj; is a usual boundary condition operator and b;; is defined as part of
the relaxer as follows. Let)Z"l"jld be a vector of values which approximate U; and
its derivatives on I'; for j € I{l). The length of the vector X is the number of
derivatives of U; used, it is normally 2 (using values and normal derivatives of
U,). Then a relager is a procedure that maps UP, X'l"jld for § € I(1), X;.’lld for
J € I(l) into by;.

Note that this definition of relaxers makes them domain-based and not interface-
based. That is, the process of obtaining U/*** is not easily interpreted as ap-
plying some independent set of procedures along the interfaces I'y; for j € I D).
Indeed, there might be interaction between different b;; where, for example, two

interfaces meet.

Q Q
1 2 icoe cecicee Qk'l Qk
r. T, vee L,

FIGURE 1. A “one dimensional” composite domain {2.

To be more specific and for the sake of simplicity, let us assume that 2is asin
Fig. 1 and denote I'; ;41 simply by I';. Furthermore, without loss of generality,
we assume that the global solution vanishes on 952, and the interior interface
condition is (3.3). Suppose that we impose Dirichlet condition on each I'y; for
j € I(l) in (3.4). In our simplified notation, the solutions on both sides of

434 M. MU AND J. R. RICE

any interface T'; have the same boundary values on I';, denoted by X, at each
iteration. Equation (3.3) is then reduced to

oU; U1 .
= /2= onT; =12,...,k—1
(3.5) n B T; fori ,

In principle, one can apply any numerical method, such as finite differences,
finite elements, or collocation to solve the local PDE problem (3.4). The corre-
sponding discrete systems can be generally written as

AU = fi+ Pao,r,_, X84 + Poyr, X' forl=1,2,... ,k
(3.6)
Xgd=Xpld=0

where the matrices A;, Pq,r,_, and Pg, r, correspond to the discretization of
the PDE operator L; in the interior and next to the boundary pieces I';_; and
TI'; of the subdomain £;. We do not distinguish the notations for a continuous
function and the vector of its discrete values.

After solving (3.4) to obtain {UP**}¥_;, we want to relax the interface con-
ditions by adjusting the solution values on interfaces to better satisfy (3.5). Let
{Xxrew}k—1 denote the new interface values. The normal derivatives of the re-
laxed solutions on both sides of I'; can be approximated by the finite differences
involving values on I’; and the discretization lines next to I';. Denote these
neighboring grid lines by T'F. A discrete approximation to (3.5) is then

Xpew — Pl US|y — Xpev
(3.7) = L= h+ fori=1,2,...,k—1,

2

where hf: denote the corresponding spacings between I'; and 1"?:. Solving (3.7)
for X" we obtain

(3.8) X = o UM |- + o USSP |pe fori=1,2,...,k—1,

with o = h—_h‘;_% and of = h—_f:_*?,: As in general relaxation methods, one can
further introduce some relaxa‘zionzparameters or make use of U*** and U]’
values on other grid lines nearby T'; or use previous values X2, UP", etc., in
order to accelerate the overall convergence. For example, one can define X["°*

by

(3.9 X7 = wX M+ (1 — w) (o] UP|p- + oF USRS I0+),

where w is a relaxation parameter. Recall that X2'¢ = UPe¥|r, = UZ¥|r, in the

present case. In general, we see that a linear relazer can be expressed as

COLLABORATING PDE SOLVERS 435
(3.10) X[= @(UP*, USY) fori=1,2,... k-1,

where ¢; is a linear combination of U*¥ or i1 restricted to grid lines near to
the interface I'; with certain weights. The choice of ; depends on the interface
condition (3.2), the approximation accuracy of the finite differences to the normal
derivatives, the relaxation techniques, and so on.

We may combine solving (3.4) for {UP*“}E_, with (3.10) to obtain the matrix
representation of {X**} in terms of {X'4}. The convergence analysis of the
relaxation process is then reduced to the standard spectral analysis of the corre-
sponding iteration matrix. We show in [2] the convergence of this iteration for
the class of relaxers as described above for general elliptic PDE problems and
general domain decomposition with cross interface points. Furthermore, under
certain model problem assumptions for a rectangular domain as decomposed in
Fig. 1, an explicit expression is obtained for the spectrum of the iteration matrix
so that the convergence mechanism is fully understood. In addition, the optimal
relaxation parameters are also determined. Extensive numerical experiments are
reported in [2] to support the theoretical convergence analysis.

4. RELAX problem solving environment

In this section, we describe a problem solving environment RELAX [1] that is
implemented as a platform to support the collaborating PDE solvers approach.
RELAX provides both a computational and user interface environment. The
computational environment coordinates teams of single-domain PDE solvers,
which collaboratively solve mathematical systems called composite PDEs that
model complex physical systems. The user interface environment coordinates
multiple interactive user interface components, called editors, which display or
alter any feature of a composite PDE problem. Editors may be both text-oriented
(e.g., equation editors) and graphics-oriented (e.g., solution plotters).

RELAX is implemented using object-oriented programming technology. The
system architecture is based upon a set of inter-communication software compo-
nents. Editors and single-domain PDE solvers are examples of RELAX compo-
nents — these particular ones are externally supplied (perhaps from libraries or
other software systems). RELAX provides a message-passing mechanism fo;f sup-
porting the inter-component communication. It is capable of integrating existing
scientific software for PDEs into a broader problem solving environment. It also
has the capability of using pre-existing display and interaction components to
form a flexible, dynamic user interface.

We briefly outline the function of each type of component of the RELAX

architecture and refer to [1] for more details:

o Primitive Objects: These are externally supplied components which n{odel
and solve primitive PDE problems. Primitive objects are responsible

436

M. MU AND J. R. RICE

for all aspects of solving a single-domain PDE problem, including the
generation of numerical meshes, discretization of the PDE, and solving
systems of equations.

Editors: These are externally supplied components which provide an
interface between the user and some feature of the system. The edi-
tor component is responsible for the complete presentation of the user
interface, including all communication with the window system and/or
graphics package.

Message Dispatcher: This is a system supplied component which handles
all transmission of messages within the system. The message dispatcher
also registers targets and can assist editors in locating targets.
Composite Problem Platform: This is a system component which main-
tains the data structures defining a composite PDE problem. For ex-
ample, the composite problem platform stores topological information
about which primitive objects share geometric interfaces, as well as equa-
tions defining the interface conditions along those interfaces. Addition-
ally, the composite problem platform maintains data structures defining
a global solution iteration, and is capable of executing such iterations.
Finally, the composite problem platform is capable of defining composite
PDE problems hierarchically.

Object Support Platform: This is a system component responsible for
integrating primitive objects into the system. The object support plat-
form provides the attachment point for primitive objects — recall that
they are external components and must be dynamically attached to the
running system. The object support platform relays messages between
primitive objects and the message dispatcher. Another feature of the
object support platform is a wvirtual object mechanism which allows var-
ious primitive objects to filter the messages intended for other primitive
objects.

Editor Support Plaiform: This is a system component which provides an
attachment point and communication interface for editors. The editor
support platform relays messages to and from editors, and is also capa-
ble of parameterizing and controlling the message flow, for example, by
copying and buffering messages.

With this environment, one can easily describe primitive PDE problems and

interface conditions to compose a complex mathematical system, specify local
solvers and relaxers to define an iterative procedure, and display the computed
solution in various ways. As an application example, we use the RELAX system
to solve a physical heat flow problem as shown in Fig. 2. The complex object
consists of seven simple subdomains with nine interfaces. The radiation condi-
tions allow heat to leave on part of the boundaries while the temperature U is
zero on all the other boundaries. The mounting regions have heat dissipated.

COLLABORATING PDE SOLVERS 437

Heat Radiation Region
. Mounting Region
D Heat Producing Region

Uxx + Uyy =~1.0
Uxx+Uyy =~10 Uxx+ Uyy +yUx =0

Radiation Boundary

3
he =
il
2 =)
Te, rﬁ =0 Radiation Boundary / U=15Un
p= U=0 Uxx + Uyy + aliy =0

FIGURE 2. A heat flow problem for a complex domain along
with the physical and mathematical descriptions.

The interface conditions are continuity of temperature {7 and its derivative. An
approximate solution of 3-digit accuracy is obtained after 15 iterations, where
the initial guess is zero and the relaxer used is as described in Section 3 with the
relaxation parameter w = 0.

5. Conclusions

We examine in this paper various aspects of the real world simulation with
the emphasis on software productivity and guality. Application of modern soft-
ware technologies and the impact on numerical PDE methods are considered.
We present a general approach for modeling complex physical systems by a net-
work of collaborating PDE solvers. The related methodologies include nefworks
of collaborating software modules, object-oriented programming and domamn de-
composition. They lead to a suitable subdomain-iteration based procedure with
interface relaxation. Various types of relaxers are discussed. A software system
RELAX is described which is implemented as a platform to test varions relaxers
and to solve complex problems using the network approach. Both theory and
practice show that this is a promising approach for solving complicated problems

438 M. MU AND J. R. RICE

on modern computer environments.

Acknowledgement. The RELAX environment is implemented by Dr. Scott
McFaddin. We would like to thank him very much for providing the implemen-
tation details. We also thank Professor David Keyes for his valuable comments
and suggestions.

REFERENCES

1. S. McFaddin and J. R. Rice, Architecture of the RELAX problem solving environment,
CSD-TR-92-081 and CER-92-37, Department of Computer Sciences, Purdue University,
West Lafayette, IN47907, October, 1992.

2. M. Mu and J. R. Rice, Collaborating PDE solvers with interface relazation, CSD-TR-93-
024 and CER-93-13, Department of Computer Sciences, Purdue University, West Lafayette,
IN47907, April, 1993.

DEPARTMENT OF MATHEMATICS, THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY,
CLEAR WATER BAy, KowLooN, Hong KoNG
E-mail address: mamu@usthk.bitnet

COMPUTER SCIENCES DEPARTMENT, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
U.S.A.

E-mail address: rice@cs.purdue.edu

