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Outflow Boundary Conditions and Domain
Decomposition Method

F. NATAF AND F. ROGIER

ABSTRACT. We consider an advection-diffusion problem. We write a Schur
type formulation by using outflow boundary conditions on the interfaces.
The condensed problem is solved by either a Jacobi algorithm (equivalent to
an additive Schwarz method), GMRES, or BiCGstab. The use of outflow
boundary conditions and of general iterative methods gives much better
results than the original Schwarz method.

1. Imtroduction

Let 2 be an bounded open set of R?, we want to solve the following convection-
diffusion problem:

u

ou Ou .
L(u) N a(z,y) i b(z,y) e vAy = fin Q
(1.1) C(u) = g on 09

where @ = (a, b) is the velocity field, v is the viscosity, f and § are given functions,
C is a linear operator. At is a constant which could correspond for instance to
a time step for a backward-Euler scheme for the time dependent convection-
diffusion equation.

In [4], Hagstrom et al. write a substructuring method for the convection-
diffusion equation based on the exact outflow boundary conditions. The method
is thus limited to a constant coefficient operator and makes use of nonlocal
boundary conditions. In [1], Despres writes a substructuring method for the
Helmholtz equation based on the radiation boundary condition of order 0. In
both previous works, only non overlapping domains were considered. In this
paper, we consider the convection-diffusion equation with variable coefficients
and a decomposition into possibly overlapping subdomains. We use local outflow
boundary conditions of order 0 and 2 (see also [7]).
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The paper is organized as follows: in § 2, we write the substructuring formulation
at the continuous level. In § 3, we discretize this formulation and we compare
three solvers of the condensed problem.

2. A substructuring formulation

Let © be a bounded open set of R2. Let €, 1<;<n be a finite sequence of
sets embedded in 2 such that Q = UY,Q;. Let T = 0Q, T; = 09; — I". The
outward normal from (; is 7i; and 7; is a tangential unit vector. Let B; 1<i<n
be a sequence of operators leading to well posed boundary value problems (see
equation (2.1) below). We assign to each subdomain i an operator S;. Let f be
a function from Q; to R and g a function from I'; to R. S;(f, g, §) is the solution
v of the following boundary value problem:

Lw)=f(x), =z
(2.1) Bi(v)=g(z), =zcl;
Clv)=g, =zedyunNT

We introduce a sequence (nf ),1<i< N,1<j<N,i+#jof functions defined
on the boundaries of the subdomains which satisfy:

i) 80 — [0,1]

i) 1] =0 on 8 — Q;
i) Y nmlx)=1, zecdy

i

REMARK 1. 7/ is zero if 89; N, = .
It is now possible to write a substructuring formulation. Let u be the solution
to (L.1) and u; = u)q,. We write a system for B;(u;):

Bi(w) = > niBi(w) = > n/Bi(u;)

J.d#e Fd#L
= Z TIZBi(Sj(leja.a?Bj(uj)))
3.3#4
= > WBi(S;(fi,§,0) + Y mBi(S;(0,0,B;(w;)))
FoJ#e J.j#t

Thus, (B;(u;)})1<i<n solves the following linear system:

(2.2)
Bi(w) — Y mBi(S;(0,0,B;(w;))) = Y mBi(S;(fie, 51 <i <N

Jud#i J3#
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Let U = (Ui)lgiSN and G = (Gi)ISiSN be the vectors
Bi(u1) Zj,j;él W{Bl(sj(flﬂj’g’ 0))
U= : and G = :
By (un) 3 .den BN (S;(fia;»3,0))
and 7 be the linear operator defined by
Zj,j;él 77{81 (8;(0,0, B;(u;)))
T(U) = :
> i.i#n TaBN(S5(0,0, B;(u;)))

System (2.2) may now be written in the following compact form:

(2.3) (Id-TYU)=@G

We shall consider three possibilities for B;:

(24) Bl =1Id

or
8 dmi—,/(@n)2+ &

2.5 B = —
( ) T aﬁ; W
(@ is the velocity field (a, b)) or
B P B an; — 4 /(@m)2 + 'élt N a7 2_
B v (1+ (@7)? o2

@mye+& (@m)?+ 3 o

The boundary conditions B7, or B are far field boundary conditions (also called
Outflow B.C., Absorbing B.C., Artificial B.C., Radiation B.C.,etc , see 2], 58D
of order 0 and 2.

3. Discretization and numerical results
In order to illustrate the validity of the method, a 2D test problem has been
performed. We solve the following problem:
(v
At
z(0,y)=1, O<y<1

fu
b = 1
4 ay(:c,l) 0, 0<z<

o
%(1,;;):0, 0<y<1

lu(z,0) =0, 0<z<1

+a(m,y>-§§+b(x,y>g—§—mu=o, 0<z<10<y<1
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The operator £ is discretized by a standard upwind finite difference scheme of
order 1 (see [3]) and B, 1<i<n be a finite difference approximation. We used
a rectangular finite difference grid. The mesh size is denoted by h. The unit
square is decomposed into overlapping rectangles. This leads to a discretization
of the operator 7 and thus of system (2.3):

3.1) (Id~Tp)(Un) = G

REMARK 2. Any other discretization could be used as well.

From the definition of 77, we see that the computation of 7, applied to some
vector U, amounts to the solving of N independent boundary value subproblems
(one subproblem in each subdomain) which can be solved in parallel. We have
considered three algorithms in order to solve (3.1): GMRES(c0), BiCGStab and
a Jacobi algorithm:

(3:2) UPt = Ta(UR) + G

The choice of the last algorithm is due to the fact that it is equivalent to an
additive Schwarz method (ASM) whose convergence has been studied in [6] and
[1] for Fourier interface conditions and in [8] for outflow boundary ¢onditions.
In Tables ! and 2, we give the number of subproblems solved so that the maxi-
mum of the error is smaller than 1076, One iteration of GMRES(co) or of ASM
counts for one solution in each subdomain and one iteration of BiCGStab counts
for two solutions in each subdomain. In the tables, Id corresponds to the use of
the Id as interface condition, OBCO to B (see (2.5)) and OBC2 to B2 (see (2.6)).

Table 1: Computational cost vs. interface conditions and solvers

Boundary Cond. | ASM | BiCGStab | GMRES
Id > 200 88 61
OBCO 86 38 33
OBC2 46 28 24

Table 1 corresponds to the following parameters:
8 % 1 subdomains, 21 x 120 points in each subdomain, overlap = 2h, v = 0.1,
At=100a=9,b=0.

Table 2: Computational cost vs. interface conditions and solvers

Boundary Cond. | ASM | BiCGStab | GMRES
Id 479 64 50
OBCo 27 22 19
OBC2 18 16 16

Table 2 corresponds to the following parameters:
4 X 4 subdomains, 35 X 35 points in each subdomain, overlap = 2h, v = 0.1,
At=1a=y9,b=0
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The use of outflow boundary conditions leads to a significant improvement,

whatever iterative solver is used. BiCGStab and GMRES give similar results
with an advantage to GMRES in terms of computational cost and to BiCGStab
in terms of storage requirements, since only two directions have to be stored.

4. Conclusion

The interest of using outflow boundary conditions as interface conditions is

clear. We have considered here the scalar convection-diffusion equation. The
same strategy can be applied to systems of PDE’s.
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