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Domain Decomposition for Elliptic Problems
with Large Condition Numbers

S. V. NEPOMNYASCHIKH

ABSTRACT. This paper suggests a technique for the construction of precondi-
tioning operators for the iterative solution of systems of grid equations approx-
imating elliptic boundary value problems with strong singularities in the coef-
ficients. The technique suggested is based on the decomposition of the original
domain into subdomains in which the singularity of coefficients is characterized
by some parameter. The convergence rate of the preconditoned iterative process
is independent of both the mesh size and the coefficients.

1. Introduction

In this paper, we design preconditioning operators for the system of grid equations
approximating the following boundary value problem:

2

@ ~ 3, deule)s o= 1), £e0,
. i,j=

u(z) =0, z€T

We assume that Q is a bounded, polygonal region and I is its boundary. Let Q be
a union of n nonoverlapping subdomains £);,

n
a=a, aN=9, i#j
i=1 .
where Q; are polygons and I'; are their boundaries. Let Q"

m=0m
i=1

be a regular triangulation of Q which is characterized by a parameter h.
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Let us introduce the weighted Sobolev spaces HJ () with the norms [11]
HUH%‘;(Q) = ||u||%2(n)+|u|%1;(a)’

(1.2) 2,0 L#wm

2 _ Vu(z)| 2
lulay @ = /Q((e(w))"(“)) do.

il

Here
a(z) =a; = const, £ €

and o(z) is the distance between the point x € €; and the boundary T'; of the
subdomain ;. We assume that

(1.3) lol < 3.

Denote by HL(Q) the subspace of H.(Q) with zero trace on I' and introduce the
bilinear form

2 ou O
a(u,v) = / (l j2=1 a;;(z) BEUJ- 5—;}—1 +a0(:1:)uv) dz
Q

and the linear functional

() = / f(z)vda.
O

We assume that the coefficients of the problem (1.1) are such that a(u, v) is a symmet-
[} o}
ric, coercive and continuous form on HL(2) x H1(Q), and that the linear functional

o
I(v) is continuous in H.().
Denote by W a space of real-valued continuous functions linear on triangles of

the triangulation Q. A weak formulation of (1.1) is: Find u € H.(Q) such that

o]
(1.4) a(u,v) = I(v), Yo e HL(Q).
Using the finite element method, we can pass from (1.4) to the linear algebraic system
(1.5) Ay = f.

The condition number of the matrix A depends on A,a and can be large. Our

purpose is the design of a preconditioner B for the problem (1.5) such that the
following inequalities are valid:

{(1.6) c1(Bu,u) < (Au,u) < cp(Bu,u), Yuc RV.

Here N is the dimension of W, the positive constants ¢, ¢z are independent of b and
a, and the action of B~ on a vector can be realized at low cost.
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2. Additive Schwarz method for singular problems

The construction of the preconditioner for the system (1.5) will be realized on
the basis of the additive Schwarz method [1, 3, 4]. To design the preconditioning
operator B, we follow [7, 10] and decompose the space W into a sum of subspaces

) W =Wy, + W.

To this end, divide the nodes of the triangulation " into two groups: those which lie
inside of O and those which lie on boundaries of Q. The subspace W, corresponds
to the first set. Let

S= Ln) oaz,

i=1

W0={uhEWl uh(m):O,mES},

Wo,; = {u" € Wp ‘ uh(z) =0, zEQM), i=1,2,...,n.
It is clear that Wy is the direct sum of the orthogonal subspaces Wy ; with respect
(o]
to the scalar product in H}(f):

Wo=Wy1®---&Wpyp.

The subspace W1 corresponds to the second group of nodes O* and can be defined
in the following way. First, define V which is the space of traces of functions from
W on S: ’

V={" ¢"@)=u"z), z€S5 u"ew}

To define the subspace Wy, we need a norm preserving extension operator of functions
given at S into Q. The basis of the further construction is the following trace
theorem for the weighted Sobolev spaces HZ(2) [11]:

THEOREM 2.1. Let Q be a bounded domain with piecewise—smooth boundary T'
from the class C? satisfying the Lipschitz condition and o is a constant such that
le| < % Then there exists a positive constant ¢1 independent of o, such that

||80”H§+a(r) < allullgy @)

for any function u € HX(Q), where ¢ € H2T*(T) is the trace of u at the boundary
T'. Conversely, there exists a positive constant ca, independent of o, such that for
any function ¢ € Hit%(T) there ezist u € HL(Q) such that

uwz) = o), zeT,

el < C2”‘P”;§+a(r)-
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.Here ||| is the norm in the Sobolev space H3+%(T) :

i)

2 _ 2 2
”‘P”H§+a<m = H‘PHLz(r) + l(le%‘L"(F)’

(2.1) o3z = Jo¥P(@)da,

o)— 2
ey = o e S iy
Denote

HES) = {ol o, =on wemi (n-)} ,

2 _ ¥ 2
el s = El“‘p“H%w“ai(m)'

To define the bounded extension operator for the finite element case from V into W,
we need mesh counterparts of the norms (1.2) and (2.1). To this end, let us split the
triangles 7T; of the triangulation Q" into three groups. Denote by M; a set of such
7; that 7; do not have vertices on S, denote by M, a set of such 7; that 7; have
only one vertex on S, and denote by M; a set of such 7; that 7; have more than one
vertex on S. Set :

n

”uhll?{;vh(n) = leuhllﬁii]hmi),

f=1
3
flw n%z;i‘h(ni) = llu”liig,h(n,.) + ‘uh‘%gxi,h(m)»

3, .00 = Z (u"(2;))*R?,
ZjEQ:'

B o (g1 — wj2)? + (uja — ug3)* + (ujz — uj1)® +

g8 7, Enne, (g(?}, Fi))2ai
+ (uj1 — uj2)® + (wyz — ujn)® + (uz3 — u;n)?
h2ai +
T,€ Mo

.S (w1 — wj2)? + (wjo — uz3)* + (uzs — uj1)?

h w.
(1 — 2a;)h?o- YU €

‘Z}EA'IE}QSL

Here z; are vertices of 7, u;1,u;2, ujs are values of u at vertices of 7;, and o(T;,T%)
is the distance between T; and T';.

Using the natural order of nodes on I';, let us put for each node z; € I'; into
correspondence the node z;4;, which is a node neighboring upon z;, and set
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h 2 — hy2
') = S g

h2 _ h12 hi2
WM ey = I i + 1T g,

1" 2,y = D (0"(2))%,

ZjEPi
(" (21) — " (21))? . 5
"] g, = . “—h? +
J#k

hZ‘ PN Yo 1 2
> ¢ ((1])— 209:)1(:22: L, verev

Zj5 EP?
The following lemmas are valid.

LEMMA 2.1. There ezist positive constants c; and ¢4, independent of o and h,
such that

03”“’1”1{;1_(01) < “uh”H.ii,h(Qi) < C4I|Uh”H(1xi(Qi)’ vt ew, i=1,2,...,n.

LEMMA 2.2. There exist positive constants ¢s and cg, independent of a and h,
such that

< 66II<P’L!IH%+.,€(P‘_), Vol eV, i=1,2,....n.

CSHSDhHH%‘}""i (Fi) S “(ph“Hé""ﬂi (Fi)

To define W71, let us use the explicit extension operator
(2.2) VoW,

which was suggested for regular elliptic second order problems. The definition and
the realization algorithm were done in [5, 6, 8] and briefly can be described in the
following way. Let us introduce the near—boundary coordinate system (s, n) which
is defined in a é—neighborhood of I';. Here s defines a point P at I'; and n is the
distance between the given point and T; along the internal pseudonormal, whose
direction at the angular points coincides with the bisectrix of the angle and along
the smooth part the vector changes, for example, linearly. Set

¢t: H(S) — HL(Q),
o = u,

(23) s+n

ulsn)=(1-3) [ 42 q,

where the function u is extended by zero in the rest of (2. Using the auxiliary mesh,
which is topologically equivalent to a uniform rectangular mesh, we can define the
finite-element analogue ¢* (2.2) of the operator ¢ from (2.3). The following theorem
is valid.
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THEOREM 2.2. There exists a positive constant ¢y, independent of a and h, such
that

h __|1th h h
[l “H;,h(ﬂ) = [[t%p ”H;,h(Q) <crlle 1|Hé+a(s)7 Vot eV.

Remark 2.1. The cost of the actions of t* and (t")* on vectors is O(h~?) arithmetic
operations (see [5] for details).
At last, we can define subspace W1

W1={uh] ul = theh, gthV}.

It is obvious that
W =W+ Wy

and this decomposition of the space W is regular in the following sense.

THEOREM 2.3. There exists a positive constant cs, independent of o and h, such
that for any function uP € W there exist u; € Wi, i = 0,1, such that

Up + U = U,

lluollax (o) + llurll o) < csllullm -

According to [8], we can construct a preconditioner for the subspace W; of the
following form
By =th5(¢hy,
where X has to satisfy

oo™z es) < (B0 9) < cuolle”lls), Vo' € V.

Here the components of the vector ¢ are equal to the values of the function " in
corresponding nodes. The constants cg, c19 should be independent of & and h. The
construction of the easily invertible operator (matrix) ¥ can be done, using 4, 6, 7].
The cost of the action B on vectors is O(h~2) arithmetic operations.

3. Preconditioning operator for Wj.

The goal of this section is the design of the preconditioning operator for the space
W which was defined in Section 2. Since W, is the direct sum of the orthogonal
subspaces Wy ;,4 = 1,2,...,n which correspond to the subdomains );, we can design
preconditioners independently for each subdomain €2; with the boundary I';. For the
sake of simplicity, we omit the subscript 7. To construct the preconditioner, we use
the additive Schwarz method. Let us decompose the domain £ into two overlapping
parts

Q= QinUQba
(3.1) B={z=(s,n)€Q 0<s<L, 0<n<26},
dist (T, 9,) — 6.

Here (s,n) is the near-boundary coordinate system; § = 0(1) is independent of A; for
the sake of simplicity, we assume that  is the simply connected domain and L is
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the length of I". Then the triangulation Q* can be decomposed into two overlapping
parts

o = ab o,

h —
Ecnin
h
% - Uz
ECQ(,

and the finite element space Wy can be decompose into two overlapping subspaces
WO = VVzn + Wb,
Win = {uPheWo| u'(z)=0, €0},
W, = {u"eWy ut(x)=0 2EQ!}.
Using (3.1), it is easy to see that there exists a positive constant c;, independent of
o and h, such that for any u” € W, there exists uf, € W;,, and u? € W}, such that

n bk
Ui T Uy = U,

lufallzzcon + luplarz o) < cullull s
Then, according to [3], we can define the preconditioner in the following form
B~' =B} + B},
where B;, and B, are such that
By, W — Wi,
Cz”“”l%[;(n) < (Binu,u) S CSHUhnir(g(Q)a Vu" € Win,
Bb W — Wb,
cllur ) < (Bow,u) < eallulfiy oy VU™ € Wi
Here ¢y and c3 are independent of o and h. From (3.1) we have that there exist
positive constants ¢; and cs, independent of a and h, such that
callu™| gy < o) < eslle” gy, Vo € Win.

This implies that the construction of B;, is equivalent to the construction of pre-
conditioners for regular elliptic problems. For instance, using combinations of the
domain decomposition and fictitious domain methods, the construction of effective
preconditioners was studied in [4, 5, 10]. A new element of the construction of the
preconditioner B is the construction of By. To this end, let us decompose {2} into
overlapping parts
!
Q= UDi,

=L

Di={z=:1:(s,n)€ﬂg,| (i—-l)% <s<(z’+1)-l—;,0<n<5},
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where | = O(1), i.e. the number of subdomains is fixed, and z(L + s,n) = z(s,n).
Then the triangulation Q{} can be decomposed into overlapping parts

!
i=1

- Uz
T;CD;

and the space W, can be decomposed into overlapping subspaces

1
Win = Z Ui7
i=1

U; = {u" € Wi,| w"(z)=0,2ED}}.
The following lemma is valid.
LEMMA 3.1. Let Q be a rectangular domain
Q={(z1,22)] —-1<z1<1,0<z2<1}

and Q" be a reqular triangulation of Q. Denote by W a space of real-valued continuous
functions linear on triangles of the triangulation Q. Then, there ezists a positive
constant cg, independent of a. and h, such that Yul e W

11

11
1
// (#Wﬁhlz + (ﬂh)2> dzadzy < cg // (xTaWuh[Q + (Uh)Q) dzadz,,
3 2
210 00

for any constant o : |a| < 1/2. Here the function 4" € W is defined in the following
way:
3
~h( N\ _ ~h ) N u (zz),z, (S [0, 1] x [O, 1],
U (Zrb) =Uu (1111@,51721) - { (1 +w1i)uh(2i)7zi e [_1,0] % [0, 1]'
Here Z; is o node of Q™ which is the nearest for the point with the coordinates
(=215, T2:)-

Using Lemma 3.1, it is easy to see that there exists a positive constant ¢y, inde-
pendent of a and h, such that for any u” € W, there exists u? € U; :

ub + -l = h,
er (et llaze) + - + lulllaye) < v e )

According to [3] and (3.2), to define the operator B;,, we can define the easily
invertible norms for subspaces V;,7 = 1,2,...,l. To this end, we use the fictitious
space lemma [5, 9].

To design the easily invertible norm in U;, we consider an auxiliary topologically
uniform mesh. For the sake of simplicity, we omit the subscript <.

Let us assume that the domain D in the near-boundary coordinate system (s, n)
has the following representation

(3.2)

D={z=(s;n)] 0<s<& 0O<n<ié}
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Introduce in the domain D the auxiliary mesh Q" with the mesh size ho and the
nodes z;;

z5 = (8i,m5), s =i-hy, mj=75 hg

i=0,1,...,n, §=0,1,...,m,
n'hozf, mh0=6
Assume that hy < hpin /2, where Ay, is the length of the minimal side of triangles
of the triangulation D”. Denote the cells of the mesh Q" by Qij
Qi; = {z=(s;,n)] s <s<si41, nj <n<njy},

i=0,1,...,n—1

i=01,...,m—1.
On the mesh Q" we will consider the mesh function V(2i;) vanishing at the boundary
nodes of the mesh Q". We will identify the mesh Q" and the triangulation of D with
the nodes z;;. Denote by F a space of real-valued continuous functions V" linear on

triangles of the triangulation Q".
Using the tensor product of matrices, introduce

B=A®J+I,,®T,

where the tridiagonal matrix A of order n — 1 approximates the second derivative
and J is a diagonal matrix of order m — 1

. 1 1 1 )
J:dla,g (h_%a9 (2h0)2a,--~7 ((m_l)ho)2a)a

‘The matrix I,,_; is the identity matrix of the order n — 1; the tridiagonal matrix T
of the order m — 1 :

1 1 1
(I—2a)h2= + (2ho) 2= 1_ (Cho)2% L
1
~ @Ry @hy?= T @R

1
~ ((m=1jho)%= 1

— 1 +
((m~1)h,)%= ((m—1)h,)?= (Mho)ﬁ
The following Lemma, is valid.

LEMMA 3.2. There exist positive constants cs, cg,independent of o ‘and h, such
that
esllV* 3y < (BV, V) < oV iy, YWheEF

where the components of the vector V' are equal to the values of the function V* in
the corresponding nodes.
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Remark 3.1. Using the spectral decomposition of the matrix A
A=QAQ",
we can invert the matrix B :
Bl =Q@®In1(A'®J ' + I, 1T HQT® I,n_s

Then the multiplication of vectors by B~! can be performed in O(h~2log h™') arith-
metric operations using the Fast Fourier Transform. To define the easily invertible
norm in the space V, using [9], we need to define operators R and T":

R:F-V, T:VSPF

Let us define the operator R which puts into the correspondence to each function
V%(2i;) € F a function u* € V in the following way. Let z;, be a node of the
triangulation D" and let 2e € Q5. Set

uh(zl) = Vh(z”)

Note that by the assumption on hg only one node z; of the triangulation D* belonging
to the cell Q;; can exist. Then the operator T is defined as follows. If the cell Qij
contains a node z of the triangulation D", we set

Vh(Zij) = uh(zl).

At other nodes of the mesh Q" the function V* (2i5) can be defined in a sufficiently
arbitrary way, for instance, as follows. Let the node 2;; belong to the triangle 7; of
the triangulation D" with the vertices 2,21, and z;,. Set

Vi(a5) = 3 (0 a) + () + (),

It is easy to see that the above-defined operators R and T satisfy the hypothesis of
Lemma 4.3 while the constants c10 and c;; are independent of & and A:

IRV 310y < c10(BV, V), wheF,
(BTu", Tu?)

IA

cn”Uh”Hé(D), Yauh eV

Then, the following theorem is valid:

'THEOREM 3.1. There ezist positive constants c12 and cy3, independent of a and
h , such that

Clz”""”%}},(u) <(C7'u,u) < 013”uh“%-1(11(D), vuh e v,

C = RB'RT,

where the components of the vector u are equal to the values of the functions u® in
the corresponding nodes.
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