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Domain Decomposition for Adaptive
hp Finite Element Methods

J. TINSLEY ODEN, ABANI PATRA and YUSHENG FENG

ABSTRACT. A highly paralielizable domain decomposition solution technique
for adaptive hp finite element methods is developed. The technique uses good
partitioning strategies and a subspace decomposition based preconditioned itera-
tive solver. Two level orthogonalization is used to obtain a reduced system which
is preconditioned by a coarse grid operator. Numerical results show fast conver-
gence for the iterative solver and good control of the condition number (less than
16 for meshes with spectral orders up to 8).

1. Introduction

Adaptive hp finite element methods [1], in which both the mesh size and spectral
order are independently varied over the whole mesh, produce exponential conver-
gence rates in the discretization error even in the presence of singularities. To-
gether with domain decomposition and parallel algorithms they have the potential
to produce dramatic improvements in finite element modeling of problems in com-
putational mechanics. However, the complex mesh and data structures involved
in adaptive hp finite element methods raise interesting issues in domain partition-
ing and the parallel solution process. Domain decomposition for h—version and
p-version finite element methods have been investigated by several authors [5][6],
but there have been no studies on domain decomposition for the hp—version finite
element methods.

Two issues that immediately arise are — automatic partitioning of Ap adaptive fi-
nite element meshes and efficient parallel solution of the resulting algebraic systems
using iterative solvers. In partitioning an hp mesh, difficulties may be encountered
due to non-uniform computational load across the elements, non-uniform commu-
nication patterns and constraints between partitions. The usual choice of finite
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element basis functions will also lead to high condition number of the associated
algebraic system (possibly O(10Pme=), where pPp,qy is the highest spectral order of
the approximation) and slow convergence of almost all iterative solvers.

In this study, a highly parallelizable domain decomposition method is developed
for adaptive hp finite element methods. The remainder of the paper is organized
as follows. In section 2, three families of partitioning algorithms are presented. In
section 3, a decomposition of the hp finite element space is formulated. The algo-
rithm is tested on a two—dimensional elliptic boundary value problem. Numerical
results and conclusions are given in section 4 and section 5, respectively.

2. Automatic Partitioning Algorithms

Efficient parallel computing requires decomposition of the problem into “load
balanced” sub-problems with minimal communication and synchronization among
them. The twin objectives in a partitioning algorithm thus are equi-distribution
of computational effort among the sub—domains, which are eventually assigned to
different processors and minimization of the interfaces between the sub-domains.
These two objectives are necessary to maximize utilization of the processors, min-
imize communication among them and reduce the size of the interface problem.
However, one may often need to accept trade-off between the two goals.

Unlike h-version methods, choice of a-priori computational effort measure is
a non-trivial issue. In adaptive hp finite element approximation, good candidate
measures of computational effort appear to be 1) error distribution in a coarse mesh
solution 2) degrees of freedom distribution in the mesh and 3) element conditioning
estimation.

Although degrees of freedom seems to be a natural choice, it does not reflect
the computational effort very accurately. The motivation for error as a partitioning
measure is in the hp adaptive strategy developed in a previous study [2].

In this section, three partitioning algorithms for adaptive hp meshes are pre-
sented. Each algorithm is implemented with different choices of computational ef-
fort measure. Due to the page limit of these proceedings,only one of the algorithms
is discussed in detail. More details will be provided in future publications.

2.1. Mesh Traversal Based Decomposition (MTBD). In this family of
partitioning algorithms, the mesh is traversed in some fashion and then elements
are accumulated into partitions based on some estimate of computational effort. In
the first choice of ordering implemented, the mesh is traversed in a nearest neighbor
with lowest load fashion. This ensures some amount of locality in the decomposi-
tion as each element has at least one neighboring element in the decomposition.
However this ordering often results in disconnected partitions. This drawback can
be somewhat overcome by using an ordering created by mapping the centroids of
the elements onto a Peano—Hilbert curve[4].

2.2. Recursive Load Based Bisection of Coordinate (RLBBC) This
family of algorithms uses an explicit choice of interface to create the partition. The
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advantage of these methods is that both objectives, load balance and minimum
interface are explicitly addressed. However, the cost of doing so inhibits the method.

In principle, the methods are comprised of selecting candidate separator sur-
faces and then selecting a separator based on maximum load balance and minimum
interface. The selection involves assigning to each candidate separator surface a
number indicative of load balance and interface size associated with the resulting
domain partitions. This approach is a generalization of the work of Miller, Vavasis
and their coworkers [3] on partitioning two and three dimensional finite element
grids for the k version.

2.3. Recursive Load Based Bisection of Ordering (RLBBO). In this
family of algorithms, an attempt is made to combine the advantages of the mesh
traversal algorithms with that of the interface partitioning. The elements are or-
dered using the “Peano-Hilbert curve” ordering, and then a recursive splitting is
applied to the resulting one—dimensional ordering of the elements. The basic algo-
rithm is outlined below:

Algorithm
1. Create an ordering of the elements by mapping the centroids of the elements onto a
Peano-Hilbert curve.
2. Let tx be the distance of the centroid of element K along this curve.

3. Compute maximum and minimum of tx.

4. Compute n trial separator levels as

tmaz — tmin
n

5. For each t; compute ¢;

dofleft
i = ——— =1} -d 0 d inter
g; = abs( Bofrion ) - dofiot + dofins

Replace dof by error or other load estimate as appropriate
6. Choose as interface t; corresponding to lowest g;
7. Apply 1-6 recursively.
One particularly demanding hp mesh ( p ranges from 1 to 7) and corresponding

partitions are shown in the figure 1(a) and figure 1(b). The resulting partitions
seem to have balanced load and nice interfaces.

3. Domain Decomposition Solver for hp FEM

The solver will be discussed with respect to the model problem defined below:

Find w €V such that Blu,v)=L(v) VveEY
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where V = {v € H'(2):v =0 on 8Q}, and B(u,v) is the bilinear form resulting
from the weak formulation of a two-dimensional second order elliptic PDE with
Dirichlet boundary conditions on the boundary 5.

Define V" C V as a finite dimensional subspace constructed by a series of affine
mappings of the following functions defined on a ‘master element’.

Vertices (Nodes):
Blem=0x00%n  i=1,234
Fdges: A
D enpte) i=13

Gem=9q (2
5 (1) i=2,4

Interior (Bubble):

bii(&,m) = pi€)ps(n)  2<4,j<p

T ¢
Pk(€)=\/2k2 1/ Pi_1(s)ds

with Pi_; the Legendre polynomial of degree k — 1

Assume domain  is decomposed into Np sub-domains. Each sub-domain Q; is
associated with a subspace V!*. Then

z’VD
VE=3"VE VEcVhicV Vi
i=1

Each subspace is further decomposed into
VE=XY 1+ X5+ XY+ + xf

where XV and X5 are spaces spanned by vertex and edge functions on subdo-
main interfaces. A}, XF and X7 are spaces spanned by vertex, edge and bubble
functions in subdomain interiors. Then, the bilinear form can be written as:

Np
— § : N s Vv B B N S \% E B
B(Uhp, uhl)) - Bi(uhp + uhp + uhp + uhp + uhp’ uhp + uhp + uhp + u'hp + uhp)
i=1

Now if the local trial functions are chosen to satisfy the orthogonality condition

(1) B k(i bk) =0 Yy € XY + XF b € XB
the element stiffness matrix reduces to the form
VvV VE o

Keli - E\‘// E"\E 0
0 0 BB
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where 1717, E\E, VE represent modified blocks of the original element stiffness ma-
trix.

If in addition the trial functions satisfy the orthogonality condition
(2) Bix(mj0e) =0 Vi € XN + &5, o€ XV + XF + &7

the resulting subdomain stiffness matrices reduce to

NN NS o IIyy Ikyg O
K; = SN 8§ 0 II= Ilgy Ilgg 0
0 0 IrI 0 0 BB

where NN, NS, SN, SS are shared degrees of freedom among subdomains. Note
that the first condition causes the orthogonalization of the bubbles with respect to
the edges and vertices while the second causes the orthogonalization of the interfaces
with the interiors. The subdomain problems are now independent of the interface
problem.

Remark 1: Implementation of the first condition can be done at the element
level and is thus completely parallelizable.

Remark 2: The modifications of NN etc. to NN etc. are of the form

Np

i=1

Remark 3: If an iterative solver (e.g. PCG,GMRES) is used, these modifica-
tions can then directly participate in the parallel matrix-vector product

Np R
K-p= Z(Ki+Ki) P
g=1
and there is no need for assembly of these components.
The parallel domain decomposition algorithm is summarized as follows:

Parallel Domain Decomposition Solution Algorithm

1. Partition the mesh into subdomains using any of the decomposition algorithms.

2. Create subdomain approximations transforming the algebraic system at the element
level to satisfy orthogonality conditions (1) and (2).

3. Solve the reduced preconditioned system by an iterative method (e.g. PCG,GMRES)
using coarser grid operator preconditioning.

4. Solve subdomain problems in parallel.
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5. Transform the solution of the reduced system to the original system for condition
(2) at subdomain level and condition (1) at element level.

4. Numerical Results And Conclusions

Poisson’s equation in two dimensions is chosen as a test problem. In figure 2(a), both
iteration counts and condition number estimation are plotted against p (ranging
from 2 to 8). The condition number is controled under 16. Figure 2(b) shows
the residual and condition number estimation against iteration count for hp DD
and Conventional Jacobi. A variant of Lanczos connection is used to estimate
conditioning of the preconditioned operator(7].

In this study, several partitioning algorithms were developed and tested for adap-
tive hp meshes. Performance of RLBBO appears to superior. Two level orthogonal-
ization of finite element basis functions produces good control of conditioning for
the algebraic system generated by hp finite element approximation. The resulting
domain decomposition solution algorithm is highly parallelizable.

Spectral Order

Adaptive hp Finite Element Mesh

Domain Decomposition Using RLBBO

Figure 1 (a) Adaptive hp mesh (b) Partitioning generated by RLBBO
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Figure 2.(a) hp Domain Decomposition Solver (4 sub-domain) (b) Comparison of
hp DD solver with conventional Jacobi Iterative Solver
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