Contemporary Mathematics
Volume 180, 1994

Stable Subspace Splittings for Sobolev Spaces
and Domain Decomposition Algorithms

P. OSWALD

ABSTRACT. The notion of a stable subspace splitting is basic for the the-
oretical understanding of some modern iterative methods for solving vari-
ational problems. For Sobolev spaces over polyhedral domains, examples
of such splittings into finite element subspaces are given along with typical
applications to multilevel and domain decomposition algorithms.

1. Introduction

Many modern iterative algorithms for solving elliptic p.d.e. discretizations
can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like)
subspace correction methods, see [27, 30, 10]. The key to their analysis is the
study of some metric properties of the underlying splitting of the discretization
space V into a sum of subspaces V; and of the variational problem on V into aux-
iliary problems on these subspaces. In Section 2, we start with a brief overview
of the abstract theory for the symmetric positive definite case based on our joint
paper with M. Griebel [12].

Investigation of such splittings for the solution of variational problems on
Sobolev spaces benefits from already existing experience with decomposing el-
ements of function spaces into simple building blocks. Approximation theory,
Fourier analysis, and the theory of function spaces are helpful in this respect.
Some examples of useful splittings of H*({2) with respect to finite element sub-
spaces over polyhedral domains in R? are given in Section 3. We restrict our-
selves to applications to second order elliptic boundary value problems (and some
problems that are closely related), an analogous theory holds for fourth order
problems, see [17, 18, 32, 6|, for similar developments involving wavelets we
refer to [5, 7] and the papers cited therein.
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88 P. OSWALD

In the final Section 4 we show how some domain decomposition algorithms
can be derived along the lines of our approach.

2. Abstract Schwarz methods

Let V be some fixed Hilbert space, with the scalar product given by a contin-
uous symmetric positive definite (s.p.d.) form a(,-) : ¥V x V — R. Note that
at this stage V' may be finite- or infinite-dimensional. Consider an arbitrary ad-
ditive representation of V by the sum of a finite or infinite number of subspaces
V; cV:

(21) v=>V,

this means that any u € V possesses at least one V-converging representation
U = Ej w; where u; € V; for all j. Suppose that the V; are equipped with
auxiliary continuous s.p.d. forms b;(-,-) : V; x V; — R. We call

(2.2) {Via} = (Vi) ,
, | 5
stable splitting of {V; a} if the quantity

(2.3 ul|] = inf bi(us,uy
) ll=, _, nte | [Sbrtun

defines an equivalent norm on V', i.e. if the bounds

(2.4) Amin = inf a_('u,,_u) y Amax = supa—(u’—u) ,
Tt [[uf? o el
are positive and finite. The quantity
— )\max
(2.5) k=r({V;a} = zj:{"}; b;}) = -~

will be called stability constant or simply condition number of the splitting (2.2).
Note that if the splitting (2.2) is into a finite number of subspaces then it is
automatically stable and the difference is only in the size of k. Also, stability
and condition do not change if we change the ordering of the subspaces.
Introduce the operators T; : V — V; by the auxiliary variational problems

(26) bj(Tju,vj) = a('u,,'uj) V‘Uj S ‘/J .

If the splitting (2.2) is stable then it is easy to show that the associated additive
Schwarz operator

(2.7) P=N"T;: V-V

2
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is well-defined and s.p.d. on V, with exact lower and upper bounds for its
spectrum given by the constants Amin and Amax from (2.4). Moreover, if for
a given linear continuous functional ® on V we define elements ¢; € V; and

¢=>;¢; €V via

(2.8) bi(¢j,v;) = ®(v;) Vv €V,

then the given variational problem

(2.9) findu €V suchthat  a{u,v)=d(v) VveV,
is equivalent to the operator equation

(2.10) findu € V suchthat Pu=¢

This is the so-called additive Schwarz formulation of (2.9} associated with the
splitting (2.2), see [27, 30, 10, 12] for historical references.

In [12] we gave another reformulation of (2.9) as operator equation in the
product Hilbert space V = x;V; which is useful in connection with the treat-
ment of additive and multiplicative subspace correction methods. In order not
to talk about computationally irrelevant situations, let from now on (2.2) be a
finite splitting, i.e. let § = 0,...,J, and suppose in addition that V is finite-
dimensional. The additive algorithm associated with the splitting (2.2) is typi-
cally defined as the Richardson method applied to (2.10):

J
211) ) =ul® —u(Pu® - ¢) = ul — Y (Tu® - ¢))
J=0
1 =0,1,..., with «(9 € V any given initial approximation to the solution u
of (2.9) resp. (2.10), and w a relaxation parameter. Alternatively, one may
apply the conjugate gradient method to the equation (2.10), relying on the same

theoretical analysis.
In contrast to the parallel incorporation of the subspace corrections ng) =

T;u® — ¢; into the iteration (2.11), the multiplicative algorithm uses them in a
sequential way:

(212)  pUHGHDIRD) o b/ O4D) _ (T H/ U+ _ gy

where j=0,...,J,1=0,1,....

The simple observation which was made in [12] is that the analysis of the
abstract methods (2.11), (2.12) can be carried out in almost the same spirit as
in the traditional block-matrix situation if one switches from the operator P to

the matrix-operator
(2.13) P={Tily}

acting in the auxiliary Hilbert space V. Let P = L+D+U bethe decomposit}on
of P into lower triangular, diagonal, and upper triangular parts (note that U =
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LT since P is symmetric positive semi-definite in f/') The following result which
explains also the central role of the above stability concept is contained in [12],
see [14] for statements of this type in the matrix case.

THEOREM 2.1. Suppose that V is finite-dimensional, and that the splitting
(2.2) is finite. Let the characteristic numbers Amax, Amin, and & of the splitting
be given by (2.4), (2.5).

(a) The additive method (2.11) converges for 0 < w < 2/Amax, with the optimal
asymptotic convergence rate

2 2

_]_—|-K, (szmax“‘)\min).

(b) The multiplicative method (2.12) converges for 0 < w < 2/||D||, with a bound
for the optimal asymptotic convergence rate given by

(w:z(vq2+1_1))

A max

(2.14) pro =1

2
2.15 me) S l— |
where the quantity q = 2||L||/Amax can be further estimated under additional
assumptions, e.g. assuming the validity of strengthened Cauchy-Schwarz inequal-
ities for the splitting (see [27, 30, 10] ). Without additonal assumptions, we
have a guaranteed worst case estimate q < [log,(4J)] which leads to

1
(2.16) P <1— ——

_— ?

ay~log,J, J— 0.
(8% 4.7

For full proofs and more details, see [12]. Note that several modifications of
the above basic additive and multiplicative schemes, e.g. the analog of symmet-
ric SOR, may be studied along the same lines. Though the estimate (2.16) is
asymptotically (for J — co) best possible in the general case [21], it is too rough
to explain the better convergence rates of the multiplicative scheme observed in
practical applications to special problem classes.

Concluding this section, we want to emphasize the crucial role played by the
condition number of the splitting for both the additive and multiplicative algo-
rithms. In our opinion, the derivation of a computationally suitable algorithm
should include a thorough analysis of the behavior of the stability constants in
order to make sure that the method is close to an optimal one. In the remaining
sections we implement this strategy in a particular situation: we briefly present
basic splittings for typical variational problems in Sobolev spaces, and apply
them to derive some known domain decomposition algorithms.

3. Splittings for C? finite elements

Let © C R? be a bounded polyhedral domain equipped with a nested sequence
of partitions

(3.1) H<Th<...<T;<...
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into d-dimensional simplices (or, if the domain is rectangular-like, into d-dimen-
sional rectangles etc.) which are regular and quasi-uniform, with constants that
are independent of j. Suppose that

;= i ~279, j=0,1,....
(3.2) 7_11&1163733(. diam(A)y= 277, j=0,1,

In practice, (3.1) is often produced by regular dyadic refinement from an initial
partition, and the constants characterizing regularity and quasi-uniformity in
(3.1), (3.2) depend only on Tp.

Consider the sequence of linear C° Lagrange finite element subspaces

(3.3) SHCcSc...cs;c...

corresponding to (3.1). The usual nodal basis of S; will be denoted by N; =
{N;p : P € V;} where V; is the set of all vertices (or nodal points) of 7;. Let
S;.p be the one-dimensional subspace of 5; spanned by the nodal basis function
Njp (PeV;,j=0,1,...).

For the definition of the Sobolev spaces H*(£2) we refer to [25, 26, 13]). The
following theorem is essentially contained in {15}, see also [22] or our survey {19],
other proofs have recently been given by Bramble, Pasciak [2], Xu [27], Zhang
{81}, Dahmen, Kunoth [5], Bornemann, Yserentant |1].

THEOREM 3.1. Let 0 < s < 3/2. Suppose that a(-,-) is a symmetric H®-
elliptic bilinear form on H*(Q)). Then, under the above assumptions on (3.3),
the following splittings are stable:

(34) {H@);0(, )} = D {855 2°7 (2 )o@}
§=0
(3.5) {0, 0} =3 Y {8722 (, Yy}
3=0 PgV;
(3.6) {H (@0} =D > {Siria(-)}
j=0 PEVJ'

‘The characteristic constants Ayin, Amax, and & for these splittings depend only
on the constants characterizing the reqularity and quasi-uniformity of the parti-
tions, on s, and on the ellipticity constants of the bilinear form.

We will call these splittings basic since many other results about computa-
tionally relevant splittings can be deduced from Theorem 3.1. Note that (3.5)
and (3.6) are consequences of (3.4). Indeed, the Lq-stability of the nodal basis
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and a comparison of the Ly and H® norms for nodal basis functions gives the
stability of the splittings

B 8522, Yt = Y {Sm 27 )@} = Y {Spial- )},

Pey; PeVy;

with uniformly bounded condition numbers &; in both cases. Thus, it remains
to substitute (3.7) into (3.4) to get the remaining splittings of Theorem 3.1.

We do not state the immediate corollaries of Theorem 3.1 concerning splittings
for the trace spaces

H(Q)r ={h € Ly(T) : 3f € H(Q) : b= fIr, |hllger = hizl}flr 1 laso}
(this class essentially coincides with H°~1/2(T")), and for the spaces

Hp(@) ={f e H*(Q) : flr =0}

which are necessary to handle Dirichlet boundary conditions for second order
elliptic problems (in both cases it is assumed that 1/2 < s < 3/2, and that I" is
the union of some (d — 1)-dimensional faces of simplices from o). Instead, we
quote some computationally relevant finite splittings which fit the assumptions
of Theorem 2.1 and lead to fast subspace correction methods for solving elliptic
finite element discretizations.

THEOREM 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Then, for all
0<jo < J < o0, the following finite splittings possess uniform condition number
estimates depending only on s and on the k in Theorem 3.1:

J
(3‘8) {SJ; a(" )} = {Sjn; a’(': )} + Z Z {Sj,P; 228j('7 ')Lz(Q)}

J=jo+1 PeV;

J
(3.9) 855000} = {Sipial5 03+ D D {8 pral,-)}

J=jo+1 PeV;

(3.10) {553a( )} ={Sjo;al, )} + >~ {Spjo.rial-)}

Pcyy

where Spj,. 5 = span{N;p : Vjo<j<J: Pec V;}. In all cases, af(-,-) is
the natural restriction of the bilinear form defined on H°(Q) onto the respective
subspaces. The statement holds for jo = —1 if the first term in the splittings is
dropped (S_1 = {0}). The extension of the results to the subspaces Syr = {g €
Ss ¢ gle =0} of HE(), 1/2 < s < 3/2, is immediate.
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The algorithm behind (3.8) was introduced by Bramble, Pasciak, Xu [4], see
also [29, 1], (3.9) goes back to X.Zhang [31]. The third splitting (3.10) was
introduced and analyzed (for jo = —1) by Griebel, see [11]. For details of the
proof of Theorem 3.2, see [19, 22].

All splittings presented in Theorem 3.2 are overlapping. One may ask for uni-
formly stable nonoverlapping splittings for {S;a(:,-)}. Stable nonoverlapping
splittings of a Hilbert space into one-dimensional subspaces are actually equiva-
lent to unconditional Schauder bases (or Riesz bases) which leads to a classical
problem that is interesting on its own. Orthonormal bases are particular cas-
es but hard to construct, especially for Sobolev spaces on domains. It is still
an open question to define and implement a prewavelet-like system of locally
supported finite element functions corresponding to (3.3) such that it forms an
unconditional basis in Ly(Q2) for arbitrary regular and quasi-uniform sequences
of partitions (3.1) (see [19] for the consequences of the existence of such a system
in the spirit of Theorem 3.2). For nice domains and sequences of shift-invariant
partitions, such constructions are essentially known.

Another early attempt to use splittings into a direct sum of one-dimensional
subspaces is the hierarchical basis method introduced by Yserentant [28, 29].
The condition number estimates for the hierarchical basis splitting can also be
obtained as consequences of Theorem 3.1, see [16].

Let us briefly mention the case of higher degree Lagrange elements. There
are two ways to deal with them: on the one hand, we can develop the whole
machinery of infinite splittings of Sobolev spaces for these elements, see [15].
On the other hand, if we are mostly interested in algorithms, we can simply
reduce the construction of iterative methods for the new element types to the
case of linear elements on the same sequence of partitions by a procedure which
corresponds to condensation of inner variables. This latter approach seems to
be preferable for several reasons, applications to nonconforming schemes have
been described in [20]. However, we do not know about a serious performance
comparison of these two possibilities. For Hermite or serendipity elements where
the monotonicity of the family of finite element subspaces (3.3) is violated, one
is recommended to use the second strategy.

It is well-known that iterative methods based on subspace splittings of the
above type can be carried over to an adaptive environment. What is not so easy
(and, therefore, a drawback of our approach) is to overcome the restrictions on
the geometry of the domain and on the counstruction of the partitions implicitely
contained in (3.1), (3.2). Domains that do not allow for a simple initial partition
into a few simplices of diameter = 1 or cannot be reduced to this situation
after a dilation tend to produce theoretically larger condition number estimates.
Since the underlying triangulation of a finite-element discretization space may be
produced by some grid-generation or -optimization method which does not care
about having a sequence of partitions (3.1) but rather provides us with some 75
we may have some trouble. Also, non-polyhedral domains and the treatment of
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isoparametric elements which occur in engineering problems require additional
ideas and arguments to get a smooth theory (this does not necessarily mean that
the algorithms, if properly adopted, will not work for these new situations).

4. Applications to domain decomposition

The use of Theorem 3.1 and 3.2 for domain decomposition methods is quite
obvious, similar ideas are contained in [23, 24]. Throughout this section, we
assume that the conditions on the domain, on the sequence of partitions (3.1),
(3.2), and on the sequence of linear finite element subspaces (3.3) are the same
as in Section 2. Moreover, to simplify the notation, we will consider a symmetric
H'-elliptic variational problem a(-,-) on H({2), the case of essential boundary
conditions is completely analogous.

4.1. Nonoverlapping domain decomposition schemes. Suppose that €2
is decomposed into nonoverlapping subdomains. In order to keep the considera-
tions simple and to use the basic splittings in a straightforward way, we assume
that the subdomains are identical with the simplices of some of the partitions
7, (we may actually allow groups of less than a fixed number of such simplices
to form the subdomains). We denote the subdomains by €, and introduce the
notations §;; for the set of finite element functions from S; with support in £,
Vj, for the set of nodal points interior to €, and set V;., = V;\ U; V;; for the
part of V; located on v = Uy(0; N ). Here, j > 4o, by our assumptions the
subspaces S, are trivial, accordingly, V;,; is empty.

For any J > jg, consider the splitting (3.8) of Theorem 3 and group the
one-dimensional subspaces as follows:

f
41 {S5a0=>"1 3 > {85p52%(, Y raian}
1 j=jo+1 PeV;,

J

+ 1 {Sis a5+ D0 ) {85325, ) nae}

J=jo+1 P€V;

The first sum contains groups of subspaces that form splittings of the § 71. Using

a simple scaling argument, we can apply Theorem 3, (3.8), on the subdomains
Q:

J
{Sssa() = > D {8527 ( Y acan}
J=jo+1 PeV;,

are stable splittings, with a common bound for their condition numbers which
is independent of !. Thus, we arrive at another stable splitting

(4.2) {Sra(+)} =D {Sssal- )}
;
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J
+ [ {Sisal5 0+ Do Y {8p 2% (5 ) naey}
J=jo+1 PEV; 4
Before going on with rewriting our basic splittings, let us introduce the Schur
complement form s;(:,-) on Sy|, induced by the form a(-,-) and corresponding
to the given subdomain structure, by setting

(4.3) 57 (Uqy, Uy) = inf a(u,u) Vuy €Syl .

UES s 1 uy=uly
This bilinear form corresponds to the Schur complement problem on < which

arises if in (2.9) the unknowns corresponding to interior nodal points (i.e. P €
V;1 for some [) are eliminated.

THEOREM 4.1. Under the above assumptions on «y and the bilinear form, the
Sfollowing splitting for the Schur complement problem on «y is stable, with a con-
dition number that is independent of jo (coarse level) and J:

J
(4.4) {SJ"YQ (-, )} = {Sjo"y; 4o (s )} + Z Z {S ',PI'Y; 23’(_, ')Lz(ﬂ)} ’

j=jo+1 PEV]',—-,
The proof of the stability of (4.4) runs as follows. By (4.3) and (4.2)

87(Uy, Uy) = uESJi'I'tll.f Ll a{u, u)
hihaie Aniiad bo 4
~ inf inf’ (a{ujy, i)
€Sy uy=uly u=ug, +E;=jo+1 ZPevj,,, uj,p

J
4 Z Z 22j(uj,P9uj,P)L2(Q))

J=jo+1 PEV; 4
inf (a (ujo » Usg )
u7=uj0=’7+z;']=jo+1 Zpevjn Ud Py

J
+ 30> Pur, ) Lye) -

j=jo+1 PEVj

Q

Here we have already used that u;;|, = 0 for all subdomains. u;, resp. u;p
denote the unique extensions of uj, .y € Sjoy T€SP. Ujpy € S; ply to functions
in S, resp. S;p (note that the latter are one-dimensional). Now it remains to
express the bilinear forms in terms of u,,,, Tesp. u;,p, which leads to (4.4). To
this end, use the definition (4.3) (with J replaced by jo), and

IN;, Pl 3o = 2N Pl ) s P € Vin

where, once again, the regularity and quasi-uniformity of the partitions comes
in.

One can prove analogs of (3.9) or (3.10) as well. Another possibility is to
group the subspaces of {4.4) according to the geometrical structure of 4. E.g,,
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in 2D applications one could associate groups with each edge of v and with each
vertex of 7;,. Then the computations of the subspace corrections for edges can
be carried out independently, e.g. on different processors, the same is true for the
vertex components if one allows for a certain redundancy in the computations.
There were different proposals to neglect the vertex components to simplify the
computations, but it is clear that this results in an increase of the condition num-
ber of the reduced splitting. In 3D, the corresponding substructures are faces
and the wirebasket (composed of edges and vertices). One can introduce a lot of
modifications (especially on the wirebasket), and also change the auxiliary prob-
lerns on the substructures. For some of the many algorithms of this type which
have been derived and analyzed by other researchers using different techniques,
we refer to work by Dryja, Widlund et.al. (see [8, 10] and the references cited
therein). Note that these authors deal also with more complicated situations
which are not covered by our reasoning.

4.2. Domain decomposition methods with overlap. In the domain de-
composition methods with overlap, the subregions ; are enlarged to a certain
extent giving domains on which local Dirichlet problems are solved (these are the
subspace problems involved in such type of algorithms). More precisely, under
the same assumptions on {;} as in the previous subsection we will compose the
enlarged regions Ql,jl of all simplices (rectangles etc.) in 7;, that intersect with
the closure of ;. The number j; is chosen between j; and J and characterizes
the amount of overlap (if j; = jo the overlap is called generous, if j; = J we have
minimal overlap). Let S'j;l, 5, denote the subspace consisting of all finite element
functions from S; that vanish outside of Ql,jl.

Consider first j; = jo or j1 = jo + 1. In this case, any of the one-dimensional
subspaces 5;p (P €V, j = jo+1,...,J) belongs to at least one and at most
d+1 (if simplicial triangulations are used) of the S = S'_];l’jl. Since, generally,

{Via(-,)} = Z{Va( )}

Jj=1

is a stable splitting with Amiy = Amex = ™ and condition number exactly 1, we
can refine the splitting (3.8) from Theorem 3.2 by adding the necessary number
of copies of one-dimensional subspaces without destroying the condition number

t00 much, i.e. under the assumptions of Theorem 3 we get the uniform stability
of the splittings

{Ssa(-,)} = {Sj: al-, )}"’“Z( Z Z {82325 (-, YL, -

F=jo+1 supp Nj, rel); i1

Now it remains to apply once again a scaled version of Theorem 3. 2, (3.8), t
¢ 1~ This leads to the particular cases j; = jo, jo + 1 of the following



STABLE SPLITTINGS FOR SOBOLEV SPACES 97

THEOREM 4.2. Under the above assumptions, the condition numbers of the
splitting

(4.5) {S5:0(5)} = {Sio;a(, )} + D _{Sia(, )}
!

behave like = 2?1 —Jo with constants that are independent of jo < j1 < J. The
result extends to Sy.r.

This result is known, see the recent papers [8, 9] where the effect of smaller
up to minimal overlap is studied in a different way. Qur approach to the case of
general 7y is first to switch from (3.8) to the subsplitting

J
{S5a(, )} = {Sjo;a( )} + > > {85,p3 2% ()}

J=jotl pey;:31 suppNj,pGQl,jl

where the condition number degenerates by the factor O(2717%), and then to
apply the above arguments to the groups of subspaces corresponding to the
subdomains €; ;,. Due to the lack of space, we omit the technical details.
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