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A Wire Basket Based Method for
Spectral Elements in Three Dimensions

LUCA F. PAVARINO

ABSTRACT. A two-level iterative substructuring algorithm with a wire bas-
ket based coarse space is proposed and analyzed. The three dimensional
model problem is scalar, elliptic, with discontinuous coefficients, and is
discretized by conforming spectral elements. The condition number of the
resulting iteration operator is bounded by C(1+log p)2, where the constant
is independent of the number of elements, their diameters, their degree p,
and the size of the jumps across element boundaries of the coefficients of
the elliptic operator. The results of this paper have been obtained jointly
with Olof B. Widlund.

1. Introduction

Iterative substructuring methods are two-level domain decomposition meth-
ods based on nonoverlapping subregions. For the h-version finite element method,
extensive research has been conducted in the last decade and many algorithms
have been proposed for three dimensional problems; see e.g. Bramble, Pasciak,
and Schatz [2], Dryja [4], Dryja and Widlund [6], Smith [15], and Le Tallec, De
Roeck and Vidrascu [7].- A recent paper by Dryja, Smith, and Widlund {5} sum-
marizes the current knowledge of the h-version case. See also Chan and Mathew
[8] for an overview of domain decomposition algorithms.

For p-version finite elements and spectral methods, the construction of iter-
ative substructuring methods is more challenging, since the stiffness matrices
can be much more ill-conditioned and different mathematical tools are needed.
See Babuska, Craig, Mandel, and Pitkdranta {1] for two dimensional problems,
Mandel [10] for three dimensional problems, Pavarino [12, 11] for overlapping
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methods in two and three dimensions, Rgnquist [14] and Maday and Patera [8]
for spectral element methods.

In this paper, we propose a wire basket based algorithm (in the terminology of
Dryja, Smith, and Widlund [5]) with condition number bounded by C(1-+logp)?,
where p is the degree of the spectral elements. This method is directly inspired
by a method developed for the h-version by Smith [15, 16]. Complete proofs of
the results can be found in Pavarino and Widlund [13].

2. The elliptic problem and its discretization

We consider a three dimensional domain 2 = Ufil 2;, a union of elements
which are cubes or smooth images of a reference cube. We consider a model,
elliptic problem on  with Dirichlet boundary conditions on I'p C 9Q and
Neumann boundary conditions on 8Q — I'p: find w € V = HL () such that

N
(1) a(u,v):Z/'mVu-Vvdm:/f'udw Yv e V.
i=1 Y Q

The values p; > 0 can be very different in different subregions. (1) is discretized
by a continuous, piecewise @, Galerkin method, using conforming spectral ele-
ments. The discrete space VP C V is given by:

VP = {v, € C°Q) : vpla, € Qp, i=1,-+- , N} N H}_(Q).

The finite element problem obtained is turned into a linear system of algebraic
equations, Ku = b, by choosing a basis in V?. A basis particularly useful in
the convergence analysis of the method will be given in the next sections, but
more practical hierarchical bases can also be used. As usual in the literature
for spectral and p-version finite elements, we distinguish between interior basis
functions, with support in the interior of an element and interface basis func-
tions, with support intersecting the interface I" = Ufil 0Q; (these can be further
divided into face, edge and vertex basis functions). The coefficients of the un-
known functions are partitioned accordingly, u = (u;,uz). As in most iterative
substructuring algorithms, the unknowns u; associated to the interior basis func-
tions are eliminated first. The reduced Schur complement obtained in this way,
Sup = b, is solved with a preconditioned conjugate gradient method (or a more
general Krylov method for nonsymmetric or indefinite problems).

3. The new method

The Schur complement system corresponds to a discrete variational prob-
lem posed in the discrete harmonic subspace VP of VP, with the inner product
s(u,v) = upSup. The functions in VP are a(-, -)-orthogonal to the interior basis
functions and they are completely specified by their interface values. The space
VPis decomposed into the direct sum of the following subspaces:

Vp = ‘/() + E V;.]
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Here Vj; is the discrete harmonic subspace of VP N HE(f;;), where Q;; =
Q; U Fy; Uy, (one space for each face), and V, is a coarse space consist-
ing of piecewise discrete harmonic functions defined solely by their values on
the wire baskets. The values on the faces are given by an interpolation op-
erator I defined by eq. (3), Section 5. On V;, we use the bilinear form
S0(,) = (1+1logp)3; piinte, [lu~ cillF,yy,)- We introduce s(-,-)-orthogonal
projections Pj; onto V;; by s(P;;u,v) = s(u,v), Vv € V;; and an approximate
projection Tp onto Vg by 8p(Tpu,v) = s(u,v), Yv € V4. Our iterative substruc-
turing method consists in solving

(2) Tu = (Tp +Zpij)u=9

by a conjugate gradient method. This is equivalent to an additive Schwarz
preconditioner for the original Schur complement system.
The following is the main result of the paper.

THEOREM 1. For the iterative substructuring method just introduced,
k(T) < const.(1+ logp)?.

Here the constant is independent of the number of elements, their diameters, the
degree p, and the size of the jumps of the coefficient p; across element boundaries.

4. Special sets of polynomials and a basis for Q,([-1,1]%)

We denote by P} the space of degree p polynomials on {~1,1] that vanish at
the endpoints.

DEFINITION 1. Let @ be the degree p polynomial satisfying
ngn ”‘P"Lz(—l,l)v ‘p(_’l) =0, (P(l) =1

DEFINITION 2. Let ®; € P} and A\i,i = 1,--+ ,p — 1, be the eigenfunctions
(normalized with unit H'—norm) and eigenvalues defined by

1 1
/ d2:(z) dv(x) . _ / &(z)v(z) dz Vv e PL.
. dz dx -1

DEFINITION 3. Given the ezgenvalues I }1_1 of Definition 2, define a set
{97 Ye2] of degree p polynomials by ©; F(-1) =0, ¢f(1)=1 and

/1 dﬁa;;fm) d”(w) dr+ 2= j Fz)v(z)dz=0 Vve P}
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DEFINITION 4. Given the eigenvalues {\; }1__1 of Deﬁmtzon 2, define a set
{o5 )55 ’]_1 of degree p polynomials by (,0”( 1) =0, ¢ f(1)=1 and
/ 1 dwf;(ﬁ) dv(z)
—1 dm d
Analogous families of polynomials satisfying opposite boundary conditions,

obtained by changing x into —z, will be denoted by ¢g , {¢; } and {¢;; }. By com-
puting the Legendre expansion of gy, it is possible to prove that |l¢g |32 (—1,1) =

dz + (A + A )/ phi(@w(z)dz=0 Ve PP

p(p+2) and ||og HLOQ( 1,1) < 1. We can now define a basis for Q,([—1,1]3).
o Interior functions: ®,(x)®;(y)@x(2), ¢,5,k=1,---,p—1L.
They are a(:,-)— and Lg—orthogonal.
o Fuace functions: ga;fj(m)tln(y)@j(z), i, ='1,°-- ,p— 1,
for the face deﬁned by =1

o Bdge functions: " (z,1,2) = oF @)pF ()®:(2), i=1,- ,p—1,
for the edge F; deﬁned by z = 1 y=1.
o Vertez functions: v;(z,y,2) = ¢ (x)oE (¥)ei(2),

for the vertices V; = (&1, il,:l:l)‘
The following result follows from a direct computation.

LeMMA 1. Face, edge and vertex basis functions are discrete harmonic.

5. Extension from the wire basket

In order to carry out a local analysis of the algorithm (i.e. global bounds from
local bounds on individual elements), it is crucial to include the constants in the
coarse space Vjp, see Lemma 2.2 in Dryja, Smith and Widlund [5] or Theorem
5.1 in Mandel [9]. WV, can be seen as the range of an interpolation operator.
We first introduce locally a preliminary interpolation operator IW : VP — Vp
by I"u = uy +up. Here uy = 35 1 u(Vi)pipE o is the sum of the vertex

components of u and ug = Z:il f _1 agz) ®; go;-tgaji is the sum of the edge
N e’

pe’rmutations

components of u, with coefficients a = Aj f u—uy )@;dz. The range of this
interpolation operator does not contam the constants We therefore consider
F = "1, the image of the function identically equal to 1 on the wire basket.

F is not equal to 1 on the faces. In order to recover the constants, consider
the function x = 1 — F, which vanishes on the wire basket. It can be split into-
six discrete harmonic components, each with nonzero values only on one face:
K= }:?=1 ;. The new interpolation operator is then defined by

6
(3) Mu= fWUfZaBFiﬂh

i=1

where TUgp, = % fBFi u. fu=1on W, then I u = 1 on 8Q. This interpolation
operator defines a change of basis in the wire basket space, by mapping edge and
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vertex basis functions into:

&®)

k k _{k
IWeg. ) = e§ )4 > eg-,gpini,
My, = v+ Y,V 0mk:

4)

v =
6. Matrix form of the preconditioner

We are solving the Schur complement system Sug = b obtained by eliminating
the interior unknowns. Let us order the face basis functions first and then those
of the wire basket. The contribution to the Schur complement S attributable to
the element £2; can be written as:

856 = ( S(% Sg(“‘)%" ) .
Siw  Sww
The preconditioner S is similarly obtained by subassembly of local contributions
S (1) constructed for individual substructures. We first change basis for the wire

basket space by using the new edge and vertex basis functions defined by (4).

The face basis functions remain the same. The transformation from the old

I . i)
to the new basis can be represented by RO 3 . In the new basis S® is

transformed into

( I 0 ) ( s s, ) ( I RO®" ) _ ( 8% nonzero )

7 7 T i - ~(’L) .
RO I s S9. 0o I nonzero Sy
We construct the local preconditioner by replacing Sl(gf}; with its block diagonal
part 5’;% with one block for each face and by dropping the coupling between
face and wire basket spaces. géf)w is replaced by a rank-one perturbation of a

multiple of the identity. It turns out that, in our basis, S'E,f)F is the diagonal of
S};J)F because each diagonal block is diagonal. We then return to the old basis:

go_( L O0Y(Sk 0 (I -RY
“\ -R® T 0o 59, o I J

The preconditioner is obtained by subassembly:
g 1L 0O S8rr 0 (I~ —RT)
"\ -R I 0 Sww 0 I )
Therefore

(5) S'_'IS = R(}S";};VR%"S -+ ZRF;S';;};F:Rgtst

where Ry = (R,I) (see Dryja, Smith, and Widlund [5]). Clearly this is an
additive preconditioner with independent parts associated with the wire basket
and each face. (5) is the matrix form of the operator T of (2).
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