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Domain Decomposed Preconditioners
with Krylov Subspace Methods
as Subdomain Solvers

MICHAEL PERNICE

ABSTRACT. Domain decomposed preconditioners for nonsymmetric partial
differential equations typically employ exact subdomain solves. Iterative
methods for subdomain problems require less storage and allow flexibility in
specifying accuracy on the subdomains. Savings in solution time is possible
if the effectiveness of the domain decomposed preconditioner is not reduced
by lower accuracy subdomain solutions. Numerical experiments compare
the overall iteration count as the accuracy of the subdomain solutions is
varied. The results demonstrate that the strategy is effective even for low
accuracy subdomain solutions.

1. Introduction

Domain decomposition is a technique for constructing parallel algorithms for
the solution of partial differential equations. Optimal and near-optimal meth-
ods have been developed, but many practical issues must be considered to obtain
efficient, scalable implementations. This paper explores how the accuracy of sub-
domain solutions affects the performance of the overall method for nonsymmetric
problems.

The solution of subdomain problems constitutes the largest single computa-
tional cost of a domain decomposition method and strongly influences the overall
performance and cost of an implementation. Direct subdomain solves require
storage for a banded matrix that represents the discrete subdomain operator.
The small local memory of many multicomputers limits the size of problems
that may be attempted. Also, the subdomain operator may not be explicitly
available and may be too expensive to calculate. An obvious alternative is to
solve the subdomain problems with an iterative method. This option leads to
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other practical considerations, such as the accuracy of the subdomain solutions,
possible degradation of the convergence rate of the overall procedure, and the
choice of iterative method.

Some of these issues have been explored for symmetric problems [1, 6, 9].
Similar studies for nonsymmetric problems have not been pursued. This paper
considers several transpose-free Krylov subspace methods to solve the subdomain
problems: GMRES [8], CGS [10], TFQMR [4], and CGS with minimum residual
smoothing (referred to as SCGS) [11].

2. The Domain Decomposition Framework

A nonoverlapping p x g partition for a total of N P = pg subdomains and a
simplified version of the methods in [3, 2] are used. The discrete system

(1) Az =b
is solved using preconditioned GMRES [8]. The preconditioner has the structure
Ao Agr
M= Ar - Ary

Ax
where Ag is a preconditioner for the subdomains, Ay is a preconditioner for the
interfaces, and AX is a preconditioner for the crosspoint problem [2]. Aqr and
Arx couple subdomains, interfaces and crosspoints. The preconditioning step
requires solution of a linear system involving M and is implemented as a block
backsolve. A crosspoint system

Axux = ’UX

is solved first. The crosspoint system is duplicated on every processor using all-
to-all communication and is solved using a banded factorization procedure. The
operator z‘iX is a coarse-grid analog of the discrete operator A.

The solution of the crosspoint system is used in problems on the interfaces

fir’u,r =vr - Arxux,

which is done in parallel. Ar is constructed using IP(0) interface probing [3].
Finally the subdomain problems

(2) Aguq = vq — Agrur

are solved in parallel. Exact subdomain solves use Aq = Aq. Using an it-
erative method to solve (2) produces a variable preconditioner that cannot be
accommodated by GMRES. A flexible variant [7] is used that allows variable
preconditioning but doubles the required storage. Despite this a net savings in
storage can be realized. Iterative methods on the subdomains are preconditioned
by an MILU factorization [5] of the local discrete operator.
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3. Numerical Results

Sharp estimates of convergence rates for the methods on the subdomains are
not available, making it difficult to predict the amount of work needed to solve
(2) and the resulting impact on the solution of (1). Consequently the advantages
of using these methods are illustrated with numerical experiments.

3.1. Model Problem. The model problem is the convection-diffusion equa-
tion .

(3) QU +couy —eAu=f (z,9) € Q.

The equation is diseretized using second-order centered differences for the diffu-

sion term and first-order upwind differences for the convection terms.
Problem 1 solves (3) on = [0, 1] x [0, 1] with constant coefficients. Dirichlet

boundary conditions and source term f are specified so that the exact solution

is

ec;z/e -1 eczy/e -1

efe—1 T el S1"

u(w,y) =

All tests run for this problem were parameterized to produce a fixed Re, = 2.
Problem 2 solves (3) on 2 = [—1,1] x [0, 1] with variable coefficients

cl(m: y) = 2:’/(1 - x2) CQ(IE, y) = '—2"1;'(1 - y2)
and mixed Dirichlet-Neumann boundary conditions:

0 iHfz=-1 ory=1
u(z,y) = 0 ify=0and —-1<2<0 ,
100 ifz=1

u, =0ify=0and0<z<1

and source term f = 0. All tests that were run for this problem were parame-
terized to produce Re, < 4 throughout the domain.

3.2. Convergence behavior. Sample convergence histories of the tested
methods are provided for reference. Results for problem 1 with a uniform mesh
size of h = 1/256 and horizontal convection appear in Fig. 1. An initial approx-
imation of z; = 1 is used, and the iterations are halted when [|r,|| < 107%]jro|l.

These histories indicate that relaxing the accuracy of the subdomain solutions
will benefit GMRES most. They also indicate that CGS is likely to be the
most economical method when accurate subdomain solutions are sought and
that a fixed number of iterations may not be advisable for CGS and its smoothed
variants. Convergence histories for other directions of convection and for problem
2 are similar.
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FiGURE 1. Convergence histories for problem 1. CGS: solid
line; TFQMR: long dashed line; SCGS: short dashed line; GM-
RES(20): dotted line; GMRES(5): dashed-dotted line.

3.3. Performance. This section compares the effectiveness of the various
domain decomposed preconditioners as the accuracy of the subdomain solves is
relaxed. In all cases p > g was chosen to favor the computational and storage
requirements of the direct methods on the subdomains with a natural ordering,
irrespective of other considerations. The measurements were obtained on the
nCUBE/2 at the San Diego Supercomputer Center. The time for constructing
the preconditioner is included, since this is the dominant cost of using exact
solves on the subdomains.

An initial approximation of z; = 0 is used for the subdomain problems and
the iterations on the subdomains are halted when |r,|| < 7l|jro]| for various
values of 77. In the case of iterative solvers on the subdomains, the subdomain
problems needed for interface probing were solved with the iterative method and
a fixed tolerance of 10-%, making Ar independent of 7. The overall FGMRES
method uses an initial approximation of z; = 1 and the iterations are halted
when |jr,]| < 1078,

Table 1 shows the results for problem 1. In most cases, decreasing 7 to 102
does not substantially increase the iteration counts. When it does, the work
saved on the subdomains more than compensates for this. For A = 1/256 the
memory per node was inadequate for a direct method on the subdomains when
Np =4 or 8. For both problem sizes, reducing 7 to 10! greatly increases the
overall iteration count but surprisingly is still beneficial for GMRES. Similar
results were obtained with directions of convection.

Table 2 shows the results for problem 2. Smaller gridsizes were used for this
problem because of memory constraints and a uniform meshsize. These results
were quite similar to those for problem 1, except to note that for the small
problem, the subdomain problems were more difficult for the iterative methods,
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TABLE 1. Results for problem 1 with horizontal convection. Ex-
ecution times are in seconds and iteration counts are in paren-
theses.
DIRECT METHOD ON SUBDOMAINS
h=1/128 h=1/256
p=2 p=4 p=4 p=2|p=4| p=4 p=2_8
g=2 g=2 g=4 |¢g=2|q=2| q=14 g=4
59.9 (8) | 14.4(12) [ 9.22 (18) || n/a | n/a | 86.3 (19) | 44.9 (59)
ITERATIVE METHODS ON SUBDOMAINS
h=1/128 7 GMR(20) | GMR(5) | TFQMR | SCGS CGS
p= 1078 || 53.1(8) | 40.4 (8) | 29.9 (8) | 30.8 (8) | 26.2 (8)
=2 107% || 39.7 (8) | 31.2(8) | 26.0 (8) | 26.7 (8) | 23.0 (8)
1072 23.6(8) | 20.5(8) | 21.2(8) | 22.3(8) | 19.2 (8)
1071 || 18.3 (11) | 16.0 (11) | 17.2 (11) | 18.2 (11) | 19.1 (11)
p=4 1078 || 22.9 (12) | 21.6 (12) | 16.5 (12) | 17.0 (12) | 14.9 (12)
g=2 1074 || 17.6 (12) | 16.3 (12) | 14.1 (12) | 14.3 (12) | 12.6 (12)
1072 | 10.8 (12) | 10.8 (12) | 12.5 (13) | 12.7 (13) | 10.4 (12)
1071 || 8.55 (15) | 8.52 (15) | 11.1 (16) | 11.4 (17) | 10.7 (16)
p=4 1076 |f 17.2 (18) | 16.2 (18) | 12.8 (18) | 13.0 (18) | 11.4 (18)
g=4 1074 | 13.3 (18) | 12.2 (18) | 10.7 (18) | 10.9 (18) | 9.50 (18)
10~2 || 8.87 (20) | 8.79 (20) | 9.97 (20) | 9.52 (19) | 8.44 (20)
10~ || 8.18 (35) | 8.06 (35) | 14.5 (46) | 20.1 (64) | 13.2 (42)
h=1/256 1 GMR(20) | GMR(5) | TFQMR SCGS CGS
p=2 1076 308 (7) 221 (7) 174 (7) 180 (7) 153 (7)
qg=2 10~4 239 (7) 170 (7) 154 (7) 161 (7) 132 (7)
1072 149 (8) 114 (8) 136 (8) 137 (8) 110 (7)
1071 || 121 (14) | 99.4 (14) | 127 (13) | 132(13) | 115 (13)
p=4 1078 || 156 (12) 120 (12) | 92.8 (12) | 95.1 (12) | 81.8 (12)
q=2 1074 || 118 (12) | 91.5 (12) | 80.9 (12) | 82.8 (12) | 72.0 (12)
10~2 || 66.7 (13) | 59.7 (13) | 69.5 (13) | 74.9 (14) | 65.3 (14)
1071 || 51.4 (18) | 47.5 (18) | 65.3 (18) | 71.0 (19) | 69.9 (19)
p=4 10-8 || 123 (19) | 99.9 (19) | 75.1 (19) | 76.7 (19) | 65.5 (19)
g=4 1074 || 92.7 (19) | 74.0 (19) | 63.4 (19) | 65.1 (19) | 55.8 (19)
1072 || 50.3 (20) | 45.6 (20) | 59.0 (22) | 56.1 (20) | 48.8 (20)
1071 || 43.3 (39) | 41.2(39) | 259 (163) | 420 (263) | 347 (224)
p=8 1078 || 106 (59) | 99.8 (59) | 77.8 (89) | 79.5 (59) | 68.8 (59)
g=4 10~ || 78.9 (59) | 71.6 (59) | 64.5 (59) | 65.7 (59) | 57.7 (59)
1072 || 44.2 (60) | 44.6 (60) | 53.1 (59) | 53.7 (60) | 47.6 (59)
101 || 46.3 (120) | 46.2 (120) | 95.8 (157) [ 260 (423) | 203 (345)
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TABLE 2. Results for problem 2. Execution times are in seconds
and iteration counts are in parentheses.

DIRECT METHOD ON SUBDOMAINS

( h=1/64 h=1/128
" p=2 | p=4 | p=4 |[[p=2| p=4 | p=4 | p=8
g= g=2 g=4 ||g=2| ¢g=2 g=4 g=4
[l 26.3 (5) | 6.15 (9) | 4.64 (19) || n/a | 64.4 (9) [ 42.3 (19) | 19.5 (50)
ITERATIVE METHODS ON SUBDOMAINS
h=1/64| 7 || GMR(20) | GMR(5) | TFQMR | SCGS CGS
p=2 1078 || 16.8 (5) | 12.6 (5) | 11.4(5) | 11.3(5) | 10.1 (5)
g=2 1074 | 124 (5) | 9.92(5) | 9.47 (5) | 9.90 (5) | 8.44 (5)
1072} 852 (5) | 7.12(5) | 8.09 (5) | 817(5) | 7.01 (5)
10-1 || 8.61(9) | 7.22(9) | 7.89(7) | 8.01(7) | 6.63 (6)
= 1076 )| 12.6 (9) | 10.1(9) | 861 (9) | 874 (9) | 7.55 (9)
g=2 1074} 942 (9) | 7.89(9) | 7.15(9) | 7.21(9) | 6.24 (9)
1072 || 6.67 (10) | 6.06 (10) | 5.47 (10) | 5.68 (9) | 5.02 (9)
101 || 5.89 (14) | 5.26 (14) | 5.28 (11) | 5.29 (11) | 4.75 (10)
p=4 1078 || 11.1 (19) | 9.75 (19) | 7.54 (19) | 7.79 (19) | 6.66 (19)
g=4 10~* |l 8.01 (19) | 7.45 (19) | 6.38 (19) | 6.50 (19) | 5.65 (19)
1072 |t 5.29 (19) | 4.88 (19) | 5.08 (19) | 5.10 (19) | 4.49 (19)
101 || 5.57 (35) | 5.26 (35) | 5.27 (24) | 5.89 (28) | 4.79 (24)
h=1/128 )| n || GMR(20) | GMR(5) | TFQMR| SCGS CGS
p=2 107° || 106 (5) | 83.4(5) | 78.0(5) [ 82.0(5) | 68.4 (5)
q=2 107* |} 84.3(5) | 66.3(5) | 67.7(5) | 72.0 (5) | 60.5 (5)
1072 || 83.2(5) | 45.4(5) | 56.7(5) | 57.7(5) | 49.6 (5)
1071 || 535 (9) | 43.8(9) | 53.9(7) | 51.5(6) | 50.2 (7)
p=4 1078 |l 79.0 (9) | 66.4(9) | 52.0(9) | 53.8(9) | 45.5 (9)
g=2 1074 |} 61.7(9) | 53.2(9) | 44.6 (9) | 46.0 (9) | 40.1 (9)
1072 1 36.7(9) | 35.7(9) | 36.4(9) | 37.2(9) | 31.8 (9)
107! | 27.5 (13) | 24.9 (13) | 31.7 (10) | 32.7 (10) | 29.8 (10)
p=4 1075 || 68.9 (19) | 63.2 (19) | 45.5 (19) | 46.8 (19) | 40.0 (19)
g=4 107* |f 52.6 (19) | 49.3 (19) | 39.1 (19) | 40.4 (19) | 34.5 (19)
1072 || 30.4 (19) | 29.1 (19) | 30.4 (19) | 31.5 (19) | 27.7 (19)
107 || 23.3 (35) | 23.2 (36) | 28.0 (23) | 25.5 (20) | 22.9 (20)
p=8 107 || 75.7 (53) | 57.9 (53) | 45.2 (50) | 46.7 (50) | 40.0 (50)
g=4 107 || 49.1 (53) | 43.4 (53) | 37.4 (50) | 38.4 (50) | 33.4 (50)
1072 || 29.1 (55) | 27.7 (55) | 28.8 (51) | 29.1 (51) | 25.5 (50)
1071 || 21.6 (80) | 21.1 (80) | 43.3 (96) | 45.3 (102) | 30.5 (74)
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resulting in faster performance for the direct method on the subdomains with
Np =16 and 32.

In general, using an iterative method to solve (2) is more effective for small
values of Np and all values of . For larger values of Np the strategy is not
competetive unless large values of 1 are used.

4. Conclusions

The domain decomposed preconditioners remain effective until 7 is decreased
to 1071, Performance improvement can be achieved by reducing the accuracy
of the subdomain solutions. The lower memory requirements of the iterative
methods allow larger problems to be attempted, which can be a critical factor
when incorporating these techniques into actual applications.

Direct methods are preferred when the subdomain problems are small. For
larger subdomain problems CGS and GMRES with a small restart parameter
were the most effective of the iterative methods. The results for 5 = 107}
suggest that a fixed number of iterations should not be used with CGS and
related methods. For the model problems that were evaluated, the additional
cost of smoothing the CGS residuals does not appear to be justified. Future
work will extend these ideas to overlapping domain partitions.
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