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AN ANALYSIS OF SPECTRAL GRAPH PARTITIONING VIA
QUADRATIC ASSIGNMENT PROBLEMS

ALEX POTHEN

ABSTRACT. Recently a spectral algorithm for partitioning graphs has been
widely used in many applications including domain decomposition. Following
some work of Rendl and Wolkowicz, we describe a mathematical programming
formulation of the graph partitioning problem, and obtain lower bounds on
the number of edges cut by a partition. We also show that finding a nearest
feasible solution to the partitioning problem from an infeasible solution that
attains the lower bound leads to a justification of the spectral algorithm.

1. INTRODUCTION

A fundamental problem in the solution of systems of equations by domain de-
composition is the problem of partitioning the domain into a given number of sub-
domains, such that the subdomains have approximately equal amounts of work and
few edges cross the subdomains. {Other criteria to measure the “communication”
requirements may be used, but for simplicity we consider here only the number of
edges.) This problem can be formulated as the problem of partitioning a graph
into subsets of specified sizes such that few edges join different subsets. The graph
partitioning problem has applications in other contexts such as the data- and task-
mapping problem in parallel computation, the ordering problem in direct methods
for sparse matrix factorization, etc.

A large number of methods have been proposed in recent years for the graph
partitioning problem. Here we consider a widely-used spectral graph partitioning
algorithm that was motivated by earlier work of Alan Hoffman, Miroslav Fiedler,
Earl Barnes, Bojan Mohar, inter alios. The work in [6] showed that the spec-
tral partitioning algorithm computes high-quality partitions for large finite element
meshes; this paper also contains a brief survey of earlier work, and additional the-
oretical results. Since then the spectral method has been carefully implemented,
extended, and employed to partition problems in several application contexts; for
instance, [5, 7, 10, 11]. However, despite its good computational behavior, a sound
theoretical justification of the method has been lacking.

In this paper we employ a mathematical programming formulation to obtain
lower bounds on the number of edges cut by a partition, and to justify the spectral
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partitioning algorithm. The lower bounds are obtained by a projection technique for
quadratic assignment problems (QAPs) developed by Hadley, Rendl, and Wolkow-
icz [4], and applied to the graph partitioning problem by Rendl and Wolkowicz (8],
who formulated the problem in terms of the adjacency matrix (perturbed by a di-
agonal matrix). Computational results from their formulation are reported in [2].
The formulation of the bipartition problem is given here in terms of the Laplacian
matrix, and although it is equivalent to the formulation with respect to the ad-
jacency matrix (i.e., there is a choice of the diagonal perturbation that leads to
the Laplacian eigenvalues), we believe this treatment is more direct and easier to
understand. Due to space limitations, we do not provide extensive computational
results here. None of these results are new; they can all be derived from the earlier
results of Rendl and Wolkowicz [8].

The QAP formulation has also been applied to envelope-size minimization and
the related 2-sum minimization problem [3]. Another justification for the spectral
partitioning algorithm may be found in [1].

2. BIPARTITION AND THE QUADRATIC ASSIGNMENT PROBLEM

Consider the problem of partitioning a graph G = (V, E) into two subgraphs of
m; and my vertices such that the number of edges “cut”, i.e., the number of edges
joining one subgraph to the other, is minimized. We denote the two vertex subsets
by Vi and V3, with [V;| = mj for j = 1, 2, and m; + mg = n. This problem can
be formulated as a quadratic assignment problem (QAP) involving the Laplacian
matrix @ of the graph G. Recall that the Laplacian Q = D — A, where D is a
diagonal matrix of vertex-degrees, and A is the adjacency matrix of G.

2.1. Formulation of bipartition as a QAP. Let X =( z;, z, )beannx?2
partition matriz consisting of the two indicator vectors z; (for j =1, 2), where z;;
is equal to one if vertex i belongs to the set V;, and is zero otherwise. Then

T n
z,7Qz; =Y Y " wiqinzr; = > d(v) —2E(V;, V),

i=1 k=1 veV;

f)vhere d(v) is the number of vertices adjacent to v, and B (V;,V;) is the set of edges
in E with both endpoints in V;. We denote the edges joining V; and V; by the set

§(V1,V2), and recall that the trace of a square matrix @, denoted by ir Q, is the
sum of its diagonal elements. Then

r XTQX = E;d(v) —2|E(V;, V)| - 2|E(Va, Va)|

(1) 2|E| - 2|B(Vi, V1)| - 21 E(V2, V2)| = 2|6(V3, Vo).

Thus the problem of minimizing the number of edges cut by a bipartition with part
sizes equal to m; and my can be written as

@)
Bmin (2, V2)| = min{(6(V3, V2) < V| =, [Val = m} = (1/2) mjn tr X7 QX

i

where X varies over partition matrices with exactly m™; ones in the jth column.
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Letw, = (1/y/m)(1 1 .-+ 1 )T denote the n-vector of all ones, scaled to
have 2-norm one. (We will write u instead of u, when the dimension is clear
from the context.) A partition matrix X is characterized by the following three
conditions: '

® X, = oD Xu=va( )
ma 0 . X

(4) XTx = (0 mz)zM,

(5) z; > 0 fori=1,...,n;5=1,2

The first part of the first condition states that each row sum of a partition matrix
is one, signifying that each vertex belongs to exactly one of the parts Vi or V5.
The second part shows that there are m; vertices in the jth part V;. The second
condition indicates that the columns of a partition matrix are orthogonal, and the
third that the elements of a partition matrix are nonnegative.

Scaling X = Y M1/2 simplifies the following exposition and exposes the structure
of the problem. With this scaling, the conditions on X are transformed to the
following conditions on Y

) Ym = u,; Y%y, =m, wherem= (1/\/ﬁ)< \/\/T% ) ;
(7) Y'Y = L

(8) (YM1/2) > 0 fori=1,...,m55=1,2

ij
The objective function tr XTQX becomes tr MY2YTQY M2 = tr MYTQY. In
the last transformation we have used the identity tr MN = tr NM, where M is
nXxk, and Nisk xn.

Minimizing this objective function subject to these constraints is NP-complete.
Hence we obtain lower bounds on the number of edges cut by relaxing the third of
these conditions.

2.2. Projected lower bounds. It is convenient to impose (6) on Y by projecting
the problem to the subspace orthogonal to the manifold defined by this condition.
Note that the two parts of this condition yield YY7u, = u,, and YTYm = m.
Thus we find that m is a right singular vector and that u, is a left singular vector
of Y corresponding to the singular value one. Choose an n x n orthogonal matrix
P=(u v ), and a 2 x 2 orthogonal matrix P, = { m wu ). The first step of
the singular value decomposition of ¥ is

T T T T
T _ [uYm uYy _ 'y mly
P} YP2 - ( VTY-m— VTY_'Q ) - ( VT__ VTYZJ_ )
(9) = ( (1] 0 ), where z = VY.

Thus if we choose Y to be

(10) Y = Pl(

e ©

I b

)PT =um? +Vzy',
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then (6) is satisfied.
Substitution of this representation of Y in the orthogonality condition (7), fol-
lowed by pre-multiplication with PT and post-multiplication with P», shows that

10
(0 sz)=12’

and hence we obtain the condition 27 z = 1.

Substituting for Y from (10) in the objective function tr M YTQY, we find that
since Qu = 0, ouly one of the four terms survives, and it becomes

tr MYTQY = trMy 2ZZVIQVzet = tr I My ZTC/jg
(11) = (@ M) (FQ2),

where Q = VT QV is the projected Laplacian.

The first term on the right-hand-side, v Mu, is easily computed to be 2myms /1,
since m = (1/\/5)( \/___V:Z; ) implies ‘that v = :i:(l/\/ﬁ)( _V:j%l_ ) . Thqs we
obtain the result [6(V1,V5)| = (1/2) (2mima/n) 27 Qz.

The bipartition problem is hence

16min(V1,V2)] = (mama/n) mzinzT@z
subject to 2lz=1,
(12) um M2 + V2T MY?) > 0.

3

Though this problem is intractable, a lower bound may be obtained by relaxing the
second constraint, and thus we find

(13) |6rmin (Va, V2)| > (mama/n)A1(@) = (mima/n)A2(Q),

.since the eigenvalues of @ are the n — 1 nonzero eigenvalues of Q. The lower bound
is attained by the corresponding eigenvector z, = V'zx,, where z, is the second
Laplacian eigenvector. Hence the orthogonal matrix attaining the lower bound is

(14) Yo =um? +VvTig,o”.

2.3. Diagonal perturbations. The lower bound on the number of cut edges can
be improved further by considering diagonal perturbations of the Laplacian. Let
Q(d) = Q+ Diag(d), where d is an n~vector whose components sum to zero. It can
be verified that tr XTQ(d)X = tr XTQX, so that this perturbation has no effect
on the number of cut edges. Proceeding as in the unperturbed case, we can show

that
Brin(V2, V2)| 2 ma min { (mama/m)z" Qld)z
+  (1/2nv/n)(my — ma)y/mima d” _Z_} 5
(15) subject to 2Fz=1.

The lower bound can be computed by nondifferentiable optimization techniques [9].
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The lower bounds in terms of the unperturbed Laplacian are still weak for “well-
shaped” finite-elernent meshes that possess partitions with few edges being cut. It
would be interesting to see how much the bounds improve when diagonal pertur-
bations are included.

2.4. Closest partition matrix., Which partition matrix Z is “closest” to the
orthogonal matrix X = YoM'/? attaining the lower bound (see (14)) in the bipar-
tition problem? We can answer this question by considering the objective function
of the bipartition problem, which we may write as

(16) min tr 27(Q + al)Z = min [|(Q + o) 27| 5.

Here we have shifted the Laplacian by a small positive multiple of the identity to
make the matrix @ + ol positive definite, so that its square root is nonsingular.
This is necessary to obtain a weighted norm. It can be verified that this shifts the
objective function by the constant an, and hence has no effect on the minimizer.
We now expand Z about X, to obtain

min [[(Q + al)V/2 (Xo + (Z — Xo)) |l
(17) = min [[(Q +al)/2Xo|lr” +2tr X{(Q + I)(Z — Xo)

2
+ @+ al)'*(Z - Xo)F -
Here we have used the identity
lA+Ble* = [|Alr* + |Bllr” +2¢r A" B,

for real matrices A and B.

On the right-hand-side of (17), the first term is a constant since Xy is a fixed
orthogonal matrix; we ignore the third term, which is a quadratic in the difference
(Z — Xy), to obtain a linear approximation. Hence we consider the problem

(18) min tr XFQ+anz = min tr MYV2YL(Q +al)Z.

Substituting for Yj from (14), and noting that u7'Q = 07, the problem becomes
(19) ngn tr M2 (v, TVVTQZ + emu’'Z +avz,"VVTZ).

The second term in the right-hand-side is constant since u” Z = (1/y/n) ( my my )
(by (3)), and hence the problem reduces to

(20) min tr M2y 2,TVVT(Q+ al)Z.

Replacing VVT = P, PT —uuT = (I, —uu®), noting again that u is an eigenvector
of Q corresponding to the zero eigenvalue (or that 2,7 u = 0), the objective function
simplifies to

mZin tr MY 202, T(Q+al)Z = ngn Ma(Q) + @) tr MYy 2,7 Z.
Further simplifications are possible. An important observation is that in the

bipartition problem Z = ( z; +/mu—z; ), where z; is an indicator vector with
m; ones and remaining elements equal to zeros, and the second column of Z is the
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complement of z; with respect to the vector of all ones. Also note that M'/%y =

t+/mime/n ( 1_1 ) . Putting these observations together, the problem becomes

(@ +a) Vmima/n) min o ( 2,7z %2; (T\{_:z/uﬁ; flé)l) )

—z"z
(21) = (2(/\2(Q) +a) \/mlmz/n) ngnln +x,7 2.

In going from the first to the second line we have used QZT u=0.

Thus the algebraic manipulations in this subsection come to a glorious conclu-
sion! One solution to (21), and hence to a linear approximation to the nearest
partition matrix problem, is obtained by choosing z; to have ones in rows cor-
responding to the smallest (most negative) m; eigenvector components of z,. A
second solution is obtained by choosing the rows corresponding to the largest (most
positive) m; eigenvector components. (These two solutions correspond to the choice
of the sign in (21).) Hence we obtain a justification of the spectral algorithm for the
bipartition problem which partitions the graph with respect to the m;th smallest
or largest second eigenvector component.
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