PREFACE

This volume captures the main part of the proceedings of the Seventh Interna-
tional Conference on Domain Decomposition Methods, which was hosted by The
Pennsylvania State University, October 27-30, 1993. Over one hundred and fifty
mathematicians, engineers, physical scientists, and computer scientists came to this
nearly annual gathering — nearly half of them for the first time. Those attending
from outside the United States accounted for about one-third of the registrants and
came from 18 countries.

Since parallel sessions were employed at the conference in order to accommodate
as many presenters as possible, attendees and non-attendees alike may turn to this
volume for the latest developments. Most of the authors are to be commended for
their efforts to balance the conflicting demands of writing for a diverse audience and
staying within limits of twelve pages for invited lecturers and six pages otherwise.
Enforcing page quotas was essential in accommodating the largest title count in the
seven-volume history of the conference — selected from an even larger number of
submissions.

After seven meetings, it would be natural to expect that domain decomposition
methods would have moved into the mainstream, and therefore ceased to justify
the special focus of their own conference. The interest of authors from many fields
in entrusting final versions of their latest work to these proceedings supports this
premise — while at the same time contradicting its conclusion! “Divide and con-
quer” domain decomposition may be the most basic of algorithmic paradigms, but
theoreticians and practitioners alike are still seeking — and finding — incrementally
more effective forms, and enjoy an interdisciplinary forum for them.

We comment briefly on the the term “domain decomposition” that has for nearly
a decade been associated with this meeting and its proceedings. In the past few
years, “domain decomposition™ has become a synonym for “data parallelism” in
the parlance of computer science. where it stands in contrast to “task parallelism.”
In a generic sense. any algorithm that achieves concurrency by applyving all of the
operations independently to some of the data, as opposed to some of the operations
independently to all of the data. may properly be called “domain decomposition,”
but casting the net this broadly almost ceases to be useful. The PDE-motivated
subject matter of this meeting has traditionally revolved around two foci within this
very broadly defined class of algorithms: iterative subspace correction methods.
and block elimination methods. In the former. which we may for convenience
call “Schwarz methods”™ (though Schwarz’s recorded perspective was narrower). a
domain solver is used as a subdomain solver inside an iteration over subdomains.
In the latter. which have been classified “iterative substructuring.” and which we
may in the same spirit call “Schur methods.” an operator equation for a lower-
dimensional interface between subdomains is derived. Schwarz and Schur methods
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may be unified in certain cases by regarding the Schwarz iteration as a map between
iterates restricted to the interfaces. Both Schwarz and Schur approaches are now
customarily used inside of a Krylov iteration (such as conjugate gradients), leading
to what may be called “Krylov-Schwarz” and “Krylov-Schur” methods. These are
terms that computer scientists are less likely to borrow.

The notion of a geometrical domain decomposition leads immediately to the
notion of a function space decomposition, in which the subspaces are associated
with subregions of support, and, in turn, to an operator decomposition, in which the
relevant operators are restrictions of the original operator to the subspaces. This
association between geometry and subspaces and operators allows many domain
decomposition methods to be analyzed as iterative subspace correction methods,
along with their relatives from classical iterative methods and multilevel methods,
in which the decomposition of the corresponding function spaces is motivated by
factors other than geometry. :

Organizing the contents of an interdisciplinary proceedings is an interesting job,
and our decisions will inevitably surprise a few authors, though we hope without
causing offense. It is increasingly artificial to assign papers to one of the four
categories of theoretical foundations, algorithmic development, parallel implemen-
tation, and applications, that are traditional for this proceedings series. Readers
are encouraged not to take the primary divisions very seriously, but to trace all the
connections. '

Browsers turning to a preface expect a few words of context, particularly about
what’s new. The volume-wide subject classifications, viz.,

65N55: Multigrid methods; domain decomposition for BVPs

65N30: Finite elements, Rayleigh-Ritz and Galerkin methods, finite meth-
ods

65F'10: Iterative methods for linear systems

65Y05: Parallel computation

65M55: Multigrid methods; domain decomposition for IVPs

65IN35: Spectral, collocation and related methods

give only a majority-weighted impression of the contents. Specific noteworthy
trends in the Seventh International Conference on Domain Decomposition Methods
are highlighted below.

s elliptic PDE problems and progress in dealing with so-called “bad parameters”:
For smooth problems, algorithms guaranteeing convergence rates that are asymp-
totically only weakly dependent of the size of the subdomains (H) into which a
domain is cut and the finest resolved length scale (h) have been known for nearly
a decade. The Poisson problem has inspired further theoretical work, primarily in
establishing links to multilevel theory [Bank-Xu, Bornemann, Griebel]. The frame-
work of “stable splittings” for iterative subspace correction methods is described in
[Oswald], and permits discretization error estimates to be obtained as a by-product
of algebraic convergence monitoring [Ruede]. The same benefit obtains from the
cascade principle for the solution of general elliptic BVPs [Deuflhard]. The depen-
dence of convergence rate on physical parameters such as jumps in the coefficients
[Bakhvalov—Knyazev, Dryja, Le Tallec-Mandel-Vidrascu, Nepomnyaschikh| and ir-
regular domain geometry not resolvable by a coarse grid [Kornhuber—Yserentent]
have also come under study herein. Obstacle problems have been extended to
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include first-order terms [Kuznetsov—Neittaanmaki-Tarvainen).

o PDE developments outside of the elliptically-dominated framework:

The problem of large first-order terms, which manifests itself in both discretiza-
tion and solution phases of a PDE, has traditionally been handled by some form
of elliptic domination. This is achieved by considering h sufficiently small, so that
second-order derivative contributions to the stiffness matrix dominate first-order, or
by artificially diffusive discretizations of the first-order terms in the operator to be
inverted. (In this case, more accurate discretizations are typically used in the com-
putation of the true residual}. Recently, investigators have been working in from the
other end of the Revnolds number spectrum, starting from methods that become all
the more accurate as the elliptic terms become vanishingly small [Katzer, Layton-
Maubach-Rabier]. (The approach in [Katzer| is related to frequency decomposition
methods.) Preconditioners so derived may be much more efficient to apply than
preconditioners coming from all of the terms of the discretization [Ashby-Kelley—
Saylor-Scroggs]. Generalized Schwarz splittings, involving mixed (Robin-type) or
tangential boundary conditions on artificial boundaries, with parameters dependent
upon the advection seem promising [Tan-Borsboom], especially in the context of
inexact subdomain solves, where parameters can be found that mitigate the loss
of coupling in an overlapped block ILU technique [de Sturler]. “Outflow” bound-
ary conditions are preferred in [Nataf-Rogier]. Meanwhile, the Schwarz alternating
method has been generalized in another way, namely, overdetermined matching
conditions within a layer of finite thickness [Sun—Tang] instead of well determined
conditions along an edge. In addition to dealing with operator nonsymmetry and
boundary conditions, research has continued into operator-splitting approaches for
advection-diffusion. Such semi-implicit, semi-Lagrangian methods are able to ex-
ploit the method of characteristics for the pure advection part and the symmetric el-
liptic theory for the pure diffusion part [Chefter-Chu-Keyes, Wang-Dahle-Ewing-
Lin-Vag]. Nonlinear problems, whose theory greatly lags practice, have come in
for more theoretical attention during the past year [Cai-Dryja, Dawson-Wheeler,
Tai]. (The ability to treat the full nonlinearity on the coarse grid only is studied in
[Dawson-Wheeler].) Wave-Helmholtz problems are also considered [Kim)].

o non-traditional discretizations:

Earlier volumes of this proceedings series were devoted almost entirely to low
order discretizations based on conforming finite elements, finite differences, or finite
volumes. This volume contains new convergence and/or complexity results for sev-
eral other discretizations, including nonmatching grids [Le Tallec-Sassi—Vidrascu],
nonconforming elements [Brenner, Sarkis|, spectral multidomain [Azaiez—Quarteroni.
Pavarino], sinc functions [Lybeck-Bowers]. h—p finite elements [Oden—Patra-Feng}.
and the multiresolution-like “sparse grids” approach [Bungartz—Griebel-Roeschke-
Zenger|. In several of these methods, the discretization and solution processes are
intertwined. Related to developments in the discretizations themselves are adaptive
grid refinements [Mishev, Shih-Liem-Lu-Zhou].

e coarsened operators:

With the non-traditional discretizations come new challenges for the derivation
of appropriate operators for one or more coarsened spaces. Coarsened spaces play
at least two critical roles as far as the mathematical analysis of domain decompo-
sition methods are concerned (and perhaps others from a computer architecture
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point of view). They may be used to weaken or remove the dependence of the
convergence rate on the number (or size) of the subdomains, and on jumps in
the coeflicients of the differential equation. A coarsened unstructured grid will, in
general, not be nested in the fine unstructured grid for which it is created. There-
fore, the corresponding function spaces are not nested. This situation has been
dealt with in multigrid theory, and is practically addressed in [Bank—Xu, Chan—
Smith]. [Kornhuber-Yserentent] consider the case in which the domain itself is not
resolved by the coarse grid, illustrating with a fractal-like domain. Fundamental
requirements for a good coarse space and some practical examples, including for
higher-order fine spaces, are given in [Widlund].

o other preconditioner developments:

Regarding preconditioners, as has been noted in a different context, anyone
“has' a perfect chance to find a better one.”! Regarding parallel precondition-
ers, the field is even more wide open, since serial suboptimality may be tolerated
in trade-offs that favor computer architectural considerations. Preconditioner can-
didates appearing in these proceedings include fast summation techniques (essen-
tially O(nlogn) dense convolutions) for the coarse grid solver required in many
elliptic preconditioners [Scott] and preconditioning a Krylov method by another
Krylov method, applied independently within subdomains [Pernice]. A “one shot”
method -combines domain decomposition on the base grid with the fictitious do-
main (or domain imbedding) method for potential problems with irregular geome-
try [Glowinski-Pan—Periaux]. The boundary element formulation of the potential
problem is employed in conjunction with a two-level BPS-type preconditioner with
optimal results for the model problem in [Steinbach]. The rich theory of wire-basket
preconditioners continues to be undergirded, most recently by [Pavarino, Shao]. In
addition, “probing” for interface preconditioner blocks has received new experimen-
tal attention in the context of large coefficient variations [Giraud-Tuminaro.

e non-PDFE problems:

One-dimensional problems under shooting are interpreted as domain decompo-
sition methods in [Lai]. Calling the partitioning of a search space for the roots of
an algebraic problem for a system of nonlinear equations a form of domain decom-
position, [Mejzlik] proposes a generalized bisection root finder.

» implementations and architectural considerations:

Domain decomposition leads to a truncated form of nested dissection ordering in
[Lin, Mehrabi-Brown]. This purely Schur form of parallelism on a distributed mem-
ory system turns out to be competitive with conventional finite element software
on vector supercomputers. Implementations of capacitance matrix and box- and
strip-based domain decomposition preconditioners are compared on shared mem-
ory parallel and superscalar architectures in [Ciarlet]. Parallel implementations of
Krylov-Schwarz domain decomposition algorithms on networks of high-performance
workstations are introduced in [Bjgrstad—Coughran—Grosse]. Their practical dis-
cussion of the capabilities and limitations of networks will help orient researchers
who are contemplating this seemingly cost-effective environment. The coarse grid
problem, though key to the optimal convergence rates achievable by domain decom-
position methods, is a bottleneck to parallelism on most realizable architectures, as

1@. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986.
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it also is in multigrid. Interesting attempts to overcome this manifestation of the
“conservation of tsuris”?, are featured in [Farhat—Chen, Roux—Tromeur-Dervout],
which also consider the algorithmically related problem of multiple right-hand sides
in a Krylov method.

& partitioning tools and environments:

As solvers mature, and the dependence of their convergence rates and paral-
le] efficiencies on the partitioning is exposed, the partitioning itself is becoming a
significant research interest. A mathematically elegant solution to the partition-
ing problem is recursive spectral bisection [Pothen], in which a small number of
eigenvectors of the Laplacian matrix of the graph of the grid are used to find the
partitioning cuts. A compiler for parallel finite element methods with domain-
decomposed unstructured meshes is demonstrated in [Shewchuk-Ghattas]. The
paper [Mu-Rice| argues for domain decomposition as a framework for the design of
object-oriented software, while [Chrisochoides—Fox—Thompson| present a problem-
solving environment for mapping subdomains and generating grids in parallel.

o applications:

The technologically important subject of semiconductor device simulation had
not taken its rightful place alongside computational fluid dynamics and computa-
tional structural mechanics in domain decomposition proceedings until the current
developments in [Bjgrstad—Coughran—Grosse, Coomer-Graham, Giraud-Tuminaro,
Micheletti-Quarteroni-Sacco]. The stiff problems of structural mechanics, caused
by aspect ratios and anisotropic material properties that are extreme even in model
problems have steadily driven domain decomposition theory, with the latest install-
ment in [Le Tallec-Mandel-Vidrascu]|. The physically smooth blending between the
domains of applicability of Euler and Navier-Stokes models that occurs in the phys-
ical world is mimicked in the “x” approach of [Arina-Canuto]. The primarily inter-
nal flow realm of incompressible Navier-Stokes is considered in [Jacobs—Mousseau—
McHugh—Knoll, Raspo-QOuazzani-Peyret, Vozovoi-Israeli-Averbuch]. Specific ap-
plications of an expanding jet [Ku-Gilreath-Raul-Sommerer], detonation com-
bustion [Cai], external aerodynamics [Cai-Gropp—Keyes—Tidriri, Hsiao-Marcozzi-
Zhang) and the shallow water equations in geophysical contexts [Cai-Navon, Chefter-
Chu~Keyes] are also taken up herein. The elliptically-dominated nonlinear Poisson-
Boltzmann equation is solved by a variety of multigrid and domain decomposition-
based methods in [Holst—Saied|, one of the few settings apart from the Poisson
problem in which these two families of methods have been carefully compared.
Perhaps the most novel application area for domain decomposition relative to pre-
vious proceedings is to the Bellman equations [Camilli-Falcone-Lanucara—Seghini],
where the state space of the relevant PDE may have dimension much larger than
three.

For the convenience of readers coming recently into the subject of domain de-
composition methods, a bibliography of previous proceedings is provided below,
along with some major recent review articles and related special interest volumes.
This list is about twice as large as could have been offered last year, and yet, will
probably be embarrassingly incomplete by the time it is published. (No attempt

2from the Viddish for “trouble”
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has been made to supplement this list with the larger and closely related litera-
ture of multigrid and general iterative methods. except for the book by Hackbusch.
which has a significant domain decomposition component.)

(1) T. F. Chan and T. P. Mathew. Domain Decomposition Algorithms. Acta
Numerica, 1994, pp. 61-143.

(2) T.F.Chan, R. Glowinski, J. Périaux and O. B. Widlund. eds.. Proc. Seccond
Int. Symp. on Domain Decomposition Methods for Partial Differential
Fquations (Los Angeles, 1988), SIAM. Philadelphia, 1989.

(3) T. F. Chan, R. Glowinski, J. Périaux, O. B. Widlund, eds., Proc. Third
Int. Symp. on Domain Decomposition Methods for Partial Differential
Equations (Houston, 1939). STAM, Philadelphia, 1990.

(4) C. Farhat and ¥.-X. Roux, Implicit Parallel Processing in Structural Me-
chanics, Computational Mechanics Advances 2. 1994, pp. 1-124.

(5) R.Glowinski, G. . Golub, G. A. Meurant and J. Périaux, eds.. Proc. First
Int. Symp. on Domain Decomposition Methods for Partial Differential
Fquations (Paris, 1987). SIAM, Philadelphia, 1985.

(6) R. Glowinski, Yu. A. Kuznetsov, G. A. Meurant, J. Périaux and O. B.
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ods for Partial Differential Equations (Moscow, 1990), SIAM. Philadelphia.
1991.
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Proc. Fifth Int. Conf. on Domain Decomposition Methods for Partial
Differential Equations (Nortolk. 1991). SIAM. Philadelphia, 1992.

(9) D. E. Keyes. Y. Saad and D. GG. Truhlar. eds. Domain-based Parallelism
and Problem Decomposttion Methods in Science and Engineering. STAM.
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(10) P. Le Tallec. Domain Decomposition Methods in Computational Mechanics.
Computational Mechanics Advances 2. 1994, pp. 121-220.

(11) A. Quarteroni, J. Périaux. Yu. A. Kuznetsov and O. B. Widlund. eds..
Proc. Sirth Int. Conf. on Domain Decomposition Methods in Science and
Engineering (Como. 1992). AMS. Providence, 1994

(12) B. F. Smith. P. E. Bjorstad and W. D. Gropp. Domain Decomposition:
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(13) J. Xu. Iterative Mcthods by Space Decomposition and Subspace Corrcction.
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The technical direction of the Seventh International Conference on Domain De-
composition Methods in Scientific and Engineering Computing was provided by
a scientific committee consisting oft James H. Bramble. Tony F. Chan. Ray-
mond C. Y. Chin. Peter J. Deuflhard. Roland Glowinski, Gene H. Golub. David E.
Keyes. Yuri A. Kuznetsov. Jacques Périaux. Alfio Quarteroni. Olof B. Widlund. and
Jinchao Xu. Local organization was undertaken by the following members of the
faculty of The Pennsylvania State University: Douglas N. Arnold. Jerry L. Bona.
Min Chen. Al Haghihat. Jie Shen. Simon J. Tavener. and Jinchao Xu {Chair).
The scientific and organizing committees. together with all attendees. are grateful
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to the following agencies, organizations, corporations, and departments for their
financial and logistical support of the conference: the National Science Foundation
(DMS-9301980), U. S. Department of Energy (DE-FG(293ER25184), the Insti-
tute for Mathematics and its Applications at the University of Minnesota, France’s
GAMNI, the IBM Corporation, Cray Research Corporation, and the Applied Re-
search Lab, the College of Engineering, the Department of Mathematics, and the
Eberly College of Science at The Pennsylvania State University.

The American Mathematical Society is publishing the proceedings of the Inter-
national Conference on Domain Decomposition Methods for the second consecutive
time. The editors are very grateful to Donna L. Harmon of AMS for her pacing and
her patience, and to Ling Shen, a doctoral candidate in the Department of Math-
ematics at The Pennsylvania State University for her assistance with reformatting
several papers received in nonconforming styles. A single thorough round of editing,
followed by the authors assuming final responsibility for the revised camera ready
copy, seems to permit a good balance between the quality of the proceedings and
the promptness of its publication.

Our families graciously forsook many weekends together for this collection and
are trusting, as are we, in a useful shelf life.
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David Keyes
Hampton, Virginia

Jinchao Xu
University Park, Pennsylvania
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