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ABSTRACT. This paper reports some experiments with the implementation
of a multigrid solver on a distributed memory parallel system. The use of
a domain decomposition method for the coarse grid problem is shown to
improve the method from both numerical and parallel efficiency points of
view. The domain decomposition method is accelerated via a restarting
procedure using the direction vectors computed at the previous solutions
of the coarse grid problem.

1. Introduction

Multigrid solvers are used in a wide range of applications. The principle of
these algorithms is to perform a few iterations of an iterative solver at each grid
level, in order to smooth out the components of the residual related to the eigen-
vectors associated with the highest eigenvalues of the discrete operator and then
project it on the coarser grid level. At the coarsest level, the problem is com-
pletely solved. Then the error is interpolated back recursively on the finer grid
levels. At each level, a few smoothing iterations are performed again. This set
of operations defines a cycle of the multigrid algorithm. The complete method
consists in iterating cycles to get a good approximation of the solution at the
finest grid level. The simplest implementation of this method is made with two
grid levels, with V-cycles.

One of the main problems with the parallel implementation of multigrid
solvers lies in the fact that the coarse grid problem needs to be solved with a
good relative precision. One strategy consists in solving the coarse grid problems
with a direct method. But direct methods are difficult to implement efficiently
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on distributed memory systems, especially for sparse matrices with small band-
width. Iterative methods are easier to parallelize. But the granularity of the
tasks depends upon the number of nodes of the problem, that tends to be small
for the coarsest grid levels.

An alternative strategy consists in using a domain decomposition solver for
the coarse grid problem, in order to increase the granularity of the tasks. In
this paper we present some results with the implementation of a two-grid solver,
using a domain decomposition method at the coarse grid level, on a distributed
memory machine.

The paper is organized as follows : Section 2 presents some results with the
implementation on a 128-processor iPSC-860 computer of a multigrid solver, us-
ing a classical iterative procedure at the coarse grid level. Section 3 recalls the
principle of the dual Schur complement method. Section 4 presents a restarting
technique for the domain decomposition method in order to reduce the num-
ber of iterations to be performed for each solution of the coarse grid problem.
Section b is devoted to a discussion of the intrinsic properties of the dual Schur
complement method that makes it a very convenient solver to be used within a
multigrid approach, and the conclusions are derived in the last section.

2. Parallel implementation of a two-grid solver

In this section we present the performance of a two-grid method, in order
to highlight the difficulties encountered with the parallel efficiency of iterative
solvers for the coarse grid problem.

The test problem is a Poisson equation arising from the discretisation by
finite difference methods of 3D incompressible Navier-Stokes equations with a
velocity-vorticity formulation. The multigrid solver is used for solving the ve-
locity problem at each time step. The fine, respectively coarse, mesh is a 1283,
respectively 64°, node regular grid. The complete domain is divided into 128
cubic subdomains, and so both grids are decomposed into 128 non-overlapping
subgrids. The iterative solver used for the smoothing iterations at the fine grid
level and for the solution of the coarse grid problem is Gauss-Seidel for the diag-
onal blocks associated with the inner nodes of each subdomain, and Jacobi for
the off-diagonal blocks associated with the interaction between subdomains.

This solver is naturally parallelizable on a distributed memory machine, each
subdomain, with its two-grid, being treated by one processor. At each iteration,
only interface nodes are involved in data transfers.

Table 1 presents the results with the implementation of a V-cycle, with 10
smoothing iterations at the fine grid level, and either 200 or 400 iterations for
solving the coarse grid problem, on a 128-processor iPSC-860 machine.  These
results show the degradation of the parallel efficiency due to the decrease of gran-
ularity at the coarsest grid level. Of course, the degradation is very sharp here,
because the iPSC-860 is a very unbalanced machine: the ratio of the comput-
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ing speed over the communication speed is greater than 10 for the present case,
according to the time measurements. But on any machine, the time for data
transfers should become dominant for some grid levels: if a subdomain consists
of a n® nodes regular grid, the number of interface nodes is 6n2. As the amount
of arithmetic operations depends linearly upon the number of nodes within the
subdomain, and the amount of data transfers depends upon the number of in-
terface nodes, the ratio of the communication cost over the computational cost
would become large on any distributed memory machine for n small enough,
which means for grids coarse enocugh.

Table 1 : ‘Efﬁciency of multigrid with Gauss-Seidel solver

number of iterations efficiency on efficiency on global
for the coarse grid the fine grid the coarse grid efficiency

200 44% 16% 34%

400 44% 16% 27%

3. Solution of the coarse grid problem with the dual Schur
complement

The dual Schur complement method for the Poisson equation consists in intro-
ducing ), the flux along the interface between subdomains, and solving iteratively
the associated condensed interface problem [1]. The solution of this problem is
the A for which the solution fields of the local Neumann problems are continuous
along the interfaces between subdomains. Then, the global field whose restric-
tion to each subdomain is defined as the solution of the local Neumann problem
is continuous, and also its normal derivative. It is therefore the solution of the
global problem.

In the case of a decomposition in two subdomains, £; and £, if A; and A
are the discretized operators on ; and Q, with Neumann boundary conditions
on the interface I's, and By and Bj the trace operators over I's of functions
defined upon ; and g, the hybrid formulation of the Poisson problem on the
domain ) can be written as follows :

Ajug + B%)\ = fi
(3'1) A2U2 - Bé/\ == f2
Blul - BQ’LLQ = 0

By substitution of u; and uy given by the two first equations in the third one,
the condensed interface problem for A is :

(3.2) (BLATIBY + ByA7 BY)X = BLAT /L — B2 A5 fo

This problem can be solved by the conjugate gradient algorithm. At each
iteration of the condensed interface problem, the local Neumann pro'blems are
solved by a direct method, and then the discontinuity of the 10’3‘?1 SOI“F'IOHS along
the interfaces are computed. So, the communication costs per iteration are the
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same as for the Gauss-Seidel method, because only interface unknowns are to
be transferred, but the granularity of the tasks is much larger, because the local
task comsists of a forward/backward substitution using the dense skyline factor-
ization instead of the sparse initial matrix. Table 2 presents the results with the
implementation of a V-cycle, with 10 smoothing iterations at the fine grid level,
and either 200 Gauss-Seidel iterations or 20 dual Schur complement iterations
for solving the coarse grid problem, on a 128-processor iPSC-860 machine.

Table 2 : Efficiency with Gauss-Seidel or dual Schur complement

coarse grid solver efficiency on efficiency on global
the fine grid the coarse grid efficiency
Gauss-Seidel 44% 16% 34%
dual Schur complement 44% 63% 53%

4. Acceleration of the dual Schur complement method

For solving the linear system of equations Az = b, the conjugate gradient
algorithm consists in computing a set of direction vectors that are conjugated
for the dot product associated with the matrix A, and that generate the Krylov
space Span{go, Ago, ..., AP 1gy}, where g is the initial residual Azg — b. The
approximate solution z, at iteration p, minimizes the A-norm of the error,
(Azp — b, z, — x), over the space Zo+Span{go, Ago, ..., AP 1go}.

If a set of conjugate directions (w;), 1 < i < p, is given, then the element z,, of

zo+Span{w;, ws,..., wp,} that minimizes the residual can be easily computed:
P
. § : (g()a wz)
(41) Tp = Tg — m’wz

i=1

Then, the iterations of the conjugate gradient algorithm can start from the
optimal starting point z,,. But the application of the standard conjugate gradient
algorithm does not make sure that the new direction vectors are conjugated to
the vectors w;, i = 1,...,p. To enforce these conjugacy relations, the new
direction vector d; at iteration number J must be reconjugated to the vectors w;
through the following procedure :

(Mg'aAd'—l) L (Mgquz)
4. - N kit § Rkt bt 2 DU AEII T
(42) 4 = Mg; (Adj-—lydj—l)dj—l 22___:1 (Aw;,w;)

where M is the preconditioner of the matrix A, and g; is the gradient vector at
iteration j, g; = Az; — b.

This is equivalent to performing the new iterations of the conjugate gradient
algorithm in the subspace A-conjugate to Span{w;,ws, ..., w,}. Then the algo-
rithm is optimal in that sense that the actual dimension of the problem to be
solved by the conjugate gradient algorithm is now equal to the dimension of 4
minus p.
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In practice, the set of conjugate vectors (w;) is built by accumulating the di-
rection vectors computed for the solution of all coarse grid problems. In order
to make the method more robust, in the face of finite precision arithmetic, a
complete reconjugation procedure is performed :

i=1 p -
o N (Mgg, Ady) L~ (Mg, Aws)
(4.3) d; = Mg; kg Ade a0 di Z—( Torwy Y

i=1

This acceleration procedure is very efficient: for 20 V-cycles of the test prob-
lem introduced in section 2, it reduces the global number of conjugate gradient
iterations for the dual Schur complement method at the coarse grid level from
450 to 150.

Of course, this acceleration technique could be applied to any problem with
multiple right hand sides solved by the conjugate gradient algorithm. But for
sparse linear systems of equations, the procedure should be too expensive in com-
puting time and memory requirement. Within a domain decomposition method,
the procedure is relatively inexpensive, as the reconjugation procedure involves
only interface unknows, when each iteration for the condensed interface problem
requires the solution of all local problems. This is all the less expensive relatively
when the domain decomposition method is used only for solving the coarsest grid
problem within a multigrid approach.

Table 3 details the elapsed times in the various sections of the multigrid proce-
dure whith the solution of the coarse grid problem by the Gauss-Seidel algorithm
or the accelerated dual Schur complement method. The test problem is the same
as in section 2, the total number of V-cycles is 20. The global error indicated in
the last column is the ratio of the L, norm of the error over the Ly norm of the
exact solution on the complete domain.

Table 3 : Comparison of elapsed times

coarse grid solver || computation || communication || total || global error
Gauss-Seidel 39 91 v 140 71074
dual Schur 35 40 75 | 8+1075
complement

This table shows that the multigrid method with the accelerated Schur com-
plement method at the coarse grid level should be faster, even on a sequential
machine, than the multigrid method with Gauss-Seidel iterations at the coarse
grid level. Furthermore, the first method is clearly better suited than the second
one for parallel computing.

5. Numerical efficiency of multigrid with solution of the coarse grid
problem by the dual Schur complement method

Table 3 exhibits different values for the global error of the solution of the
problem after 20 V-cycles, depending upon the solution method for the coarse
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grid problem. For both cases, the number of smoothing iterations at the fine grid
level, and the stopping criterion for the residual of the coarse grid problem are
the same. However, for all the test cases we studied, the results were identical:
with the same stopping criterion at the coarse grid level, the multigrid algorithm
converges faster when the coarse grid problems are solved by the dual Schur
complement method.

A tentative explanation of this phenomenon relies upon the spectral proper-
ties of the dual Schur complement operator [2]. The largest eigenvalues of the
dual Schur complement operator are related to the low frequencies of the primal
problem. This implies that the components that are captured first by the con-
jugate gradient iterations for problem 3.2 are the low frequencies of the coarse
grid. That is exactly what the coarse grid solver is supposed to do in order to
make the multigrid method efficient.

Furthermore, these spectral properties of the dual Schur complement method
allow a very fast convergence if the stopping criterion is not too small. Within
the multigrid solver, the coarse grid problem needs to be solved only to within
a relative residual slightly smaller than the global residual at the current cycle.
Therefore, the dual Schur complement method turns out to be a very well suited
iterative solver for the coarse grid level.

6. Conclusions

The results presented here show that the dual Schur complement method for
solving the coarse grid problems in a multigrid algorithm has very good features
from both numerical and parallel implementation points of view. Of course,
although the test problem was a two-grid method, it can be used with any
multigrid strategy. The acceleration technique introduced in section 4 can also
be easily extended to non symmetric problems with another Krylov space method
like the generalized conjugate residual. So, the coupling between multigrid and
domain decomposition techniques looks very promising for the parallel solution
of large scale numerical engineering problems.
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