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Error estimators based on stable splittings

U. RUDE

ABSTRACT. Stable splittings have been used successfully to describe and
analyze the performance of iterative solvers based on subspace corrections.
The same theoretical foundation can be used to construct abstract upper
and lower error estimates. This approach leads to a unified treatment
of discretization and iteration errors and can therefore be used to guide
iteration and mesh refinement strategies. The estimate does not require
the exact solution of a fixed finite element problem, but can be used for
any approximation that may be available. The estimate is based only on
quantities that occur naturally in the solution process, so no extra work is
required.

1. Introduction

Multilevel- and domain decomposition methods are generally based on a split-
ting of the solution space. Such subspaces, together with their Hilbert space
structure, define elementary operations, that can in turn be used to construct
iterative methods and preconditioners, the so-called subspace correction meth-
ods. This framework includes many iterative methods like classical relaxation
schemes, domain decomposition algorithms, and multilevel preconditioners. The
discussion of algorithms in this setup turns out to be useful, because the perfor-
mance of solvers and preconditioners depends on a single abstract feature of the
subspace system, the so-called stability of the splitting.

Additionally, the splitting of the space can be used to derive error estimates.
If the subspace splitting is stable, we obtain uniformly bounded lower and upper
error estimates. Depending on the interpretation of the spaces, the bounds apply
to the (algebraic) iteration error or the (continuous) discretization error such that
the error estimate combines in a natural way discretization errors and algebraic
errors. This dual viewpoint distinguishes our approach from conventional error
estimators. In contrast to more conventional estimates, this approach does not
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require the exact solution of a finite element system, but can be applied to an
approximate solution during the iterative solution process. It therefore provides
useful criteria for the development of a strategy for switching from iteration to
refinement, and vice versa.

Since iteration and discretization errors are estimated by a uniform approach,
it becomes natural to consider algorithms that combine iteration, error esti-
mation, and mesh refinement. An implementation of these ideas has been in-
troduced as the the wvirtual global grid refinement technique and the multilevel
adaptive iteration in Riide [7, 8]. Our error estimate is based on subspace correc-
tions, as they are computed in each iteration step such that the estimate involves
no extra cost but only the correct interpretation of quantities occuring in the
iterative solution process.

The integration of error estimates in a multilevel solution process has been
discussed in several papers, see e.g. Bank, Smith, and Weiser [2, 1], Deuflthard,
Leinen, and Yserentant [3], and Verfiirth [9]. In this paper we will derive new
error estimates based on the theory of stable splittings.

2. Stable splittings

We use an abstract setting, where V is a Hilbert space equipped with a scalar
product {-,-)y and a norm

lully = (u, u)3/2.

Given a V-elliptic, symmetric, continuous bilinear form a : V x V — R with
constants 0 < ¢; < ¢z < o0, such that

(2.1) a{v,v)v < a(v,v) < e, v)y
for all v € V, we study the elliptic problem: Find u € V such that
(2.2) alu,v) = ®(v)

for all v € V, where the functional ® € V* is a continuous linear form.
'To introduce a multilevel structure, we consider a finite or infinite collection

{Vi}jes of subspaces of V, each with its own scalar product (-,-)y; and the
associated norm

My, = (e, w2,

We further assume that the full space V can be represented as the sum of the
subspaces V;, j € J,

(23) V=3V
ied
and assume that the spaces are nested, that is J ¢ No, V; C V5, ifi < 5.

In typical applications, |- ||y is the H!-Sobolev norm and the subspace norms
i - llv; are properly scaled Ly-norms. Typically, | - v; = 27| - ||L,.
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Any element of V can be represented as a sum of elements in Vi, 3 € J.
Generally, this representation is non-unique. The additive Schwarz norm ||| - |||
in V' with respect to the collection of subspaces {V;};cs is defined by

1
2
def .
(24) ol = i (D losllfy | [vi€ Vs Dvi=v

Jjed jeJ

A collection of spaces {V;};cs satisfying (2.3) is called a stable splitting of V,
if || - ||y is equivalent to the additive Schwarz norm of V, that is, if there exist
constants 0 < ¢3 < ¢4 < 0o such that

(2.5) esllvlly < oll® < eallwllfy
for all v € V. The number
(26) 6V, {Vi}ses) & inf(cs/es),

that is the infimum over all possible constants in (2.5), is called the stability

constant of the splitting {V;};eJ-
Next, we introduce auxiliary Vj-elliptic, symmetric, bilinear forms

bj:V;'XV}—>R

in the spaces Vj, respectively. In classical multigrid terminology, the choice of b;
determines which kind of smoother we use. For the theory, we require that the
b; are uniformly equivalent to the respective inner product of the subspace, that
is that there exist constants 0 < ¢z < ¢g < oo such that

(2.7 es(v,v5)v; < bi(v5,v5) < cs(v5,v5)v;s

forallv; € Vj, j€J.
Multilevel algorithms are now described in terms of subspace corrections Py, :
V —s V;, mapping the full space V into each of the subspaces V;. Py, is defined

by

(2.8) b;(Py,u,v;) = a(u,v;),

for all v; € V;, j € J. Analogously, we define ¢; € V; by
(2.9) bi (85,75} = ®(vs),

forallv; €V, 7€ J.
The additive Schwarz operator (also called BPX-operator) Py : V — V with

respect to the multilevel structure on V' is defined by

(2.10) Py =Py,
jed
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and
¢=> &
jed
With suitable bilinear forms b; it is possible to evaluate P efficiently based on
its definition as a sum. The explicit construction of Py is not required.

The hierarchical structure in the subspace system seems to be essential for
obtaining a stable splitting. Otherwise, the complexity of the original problem
must be captured in the bilinear forms b;(-,-), and then the evaluation of the
Py, is as expensive as the solution of the original problem.

The importance of the abstract multilevel structure for practical applications
is indicated by the following theorem.

THEOREM 2.1. Assume that the subspaces V;, j € J of a Hilbert space V are
a stable splitting. Assume further that Py, and Py are defined as above with
bilinear forms b; satisfying (2.7). The variational problem (2.2) is equivalent to
the operator equation

(2.11) Pyu=¢,

and the spectrum of Py can be estimated by

(2'12) _—c’l— < )\min(PV) < )\max(PV) § "?'2_

C4Ce C3Cs
For a proof see Oswald [4, 5] or Riide [8].
Remark. Results similar to Theorem 2.1 have been developed within the domain
decomposition and multigrid literature. The interested reader is also referred to
the survey articles of Xu [10], Yserentant [11], and the references given therein.

3. Multilevel Error Estimators

Besides providing the theoretical basis for the fast iterative solution of dis-

cretized PDEs, the multilevel splittings can also be used to provide error esti-
mates.

The scaled residuals 7; € V; of u are defined by
1) () = alu—utvp) = afu,v;) - B(vy)

for all v; € V;, j € J, where u* is the solution of (2.2) in V. The following
theorem is an abstract and more general version of a result given in [6], see also

8.

'THEOREM 3.1. Assume that the collection of spaces {V;}ies is a stable split-
ting of V, and that u* is the solution of (2.2) in V. Then there exist constants
0 < ¢y <y < oo such that

(3.2) Y Il <lh-wi <Y 175113, -

jed jeJ
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Proof. With inequalities (2.1) and equation (2.7) it suffices to show that there
exist constants 0 < ¢y < & < oo such that.

(33) Co ij(’?j, ’Fj) <a(u—u*,u— u*) <@ ij(?j,’l—"—j).
JjeJ Jj€J

From Theorem 2.1, we know that there exist such constants with

20a(Py (u —u*),u— u*) < a(u—u*,u — u*) < GalPylu—u*),u—u*).

Additionally,
a(Py(u—u)u—u") = Za(u —u”, Py, (u — u*))

jed

= Z bj(Fj, PV] (’U, - u*))
jed

= > aF, (u-u")
jed

= Y bi(F,7),
jed

which concludes the proof. [

The value of Theorem 3.1 is that it estimates an unknown quantity, the error
u — u*, by known quantities, the residuals Py,u — ¢;.

In contrast to the usual error estimators used for finite elements, (3.2) uses a
sum of residuals from all levels. In general, this sum is infinite, so that, at a first
glance, the practical usefulness seems to be limited. Estimate (3.2), however,
gives valuable insight into the nature of adaptive processes because it relates the
residuals from all levels of a hierarchical representation of the solution. Thus,
iteration errors, which result in residuals on coarser levels, are included in the
estimate. This information can now be used to guide the switching from iteration
to refinement and vice versa. Suitable algorithms have been proposed in Riide
[8], where the idea is to treat refinement and iteration as essentially the same
process.

Finite element nodes must be relaxed whenever the associated residuals are
large relative to the overall error estimate. Using the virtual global grid data
structure (see [8]), this strategy can be extended to unknowns that are not
yet included in the finite element system. Of course, such unknowns must be
generated by some refinement algorithm, before they can be relaxed.

4. BEstimates based on residuals on one level

Based on (3.2) we will now develop an error estimator that uses the residuals
of one level only. In view of Theorem 3.1 we need an additional assumption that
can be used to bound the error contribution of an infinite sequence of levels by
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one of them alone. This can be accomplished by introducing the well known
saturation condition (see, e.g., Bank and Smith [1])

(4.1) a(wjpy —u* uj, —u*) < vja(u) —

* * *
5 —ut,uy —u’),

for a constant y; < v < 1, where u; denotes the ezact solution of the level j
equations defined by

(4.2) a(uj,v;) = ®(v;),

for all v; € V.

The saturation condition (4.1) makes assumptions about the speed of conver-
gence of u} to u* with respect to the multilevel system. Note that if V4 is a
space with higher approximation order than Vj, then typically, v; — 0, when
J — co and if u* is sufficiently smooth. In our paper we do not assume higher
order approximation spaces, so that 7; will tend to a constant like 1/4 for linear
finite elements and smooth solutions. Consequently, our error estimate cannot
be asymptotically exact.

THEOREM 4.1. Let 7711 denote the residual of u; on level j + 1, defined by
(4.3) bjr1(Ti i1, v541) = a(uf — u*,v;41)

for all vj1y € Vjiq. If the saturation condition (4.1) holds, then there exist
constants 0 < ¢1 < ¢y < 0o such that

(44) Clbj.|_1 (7_“;+1,F;+1) < a(u;‘ - U*, ’U,; - U*) < Cgbj.’_l(f;_f_l, F;+1).

Proof. Using the theorem of Pythagoras

*_.

a(u; ut,uf —ut) = a(ujy; — u,up g — 5) + a(ujy; - ut Ul —ut)

and the saturation condition (4.1), we obtain

a(ujy; — UG, UG g — 7)< a(uj — ut,u; —u') <

* * * *
aujiy —uj,ujy, — ).

Next, we must estimate the difference uj,q —uj in terms of 71 First, note that
in V11 equipped with the ||-||y-norm, the finite system of spaces V, V1, ..., V;11,

each with its own norm || - |}y, || |lv,,. .. , Il-1lv,,, is a stable splitting (see Riide
[8]). The finite additive Schwarz operator
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is spectrally equivalent to the identity in Vjt1, so that

j+1
a(ujy; — u5, Ui —u;) < ca ZPVk (ujyq — ui), Uiy — uj
k=0
i+1
= 1) b (P (uf — uf), P (ufy; — 1))
k=0

Noting that
Py (uf —u")=0
for £ < 7, and
PVj+1(u;+1 —u') = Tit1s
we find the upper bound in (4.4). The proof of the lower bound is analogous. [J

5. Conclusions

In this paper we have briefly outlined how multilevel error estimates can be
derived from the theory of stable splittings, and how they are therefore linked
to fast iterative solvers. We believe that this is of not only theoretical inter-
est, because it can be used directly to construct and analyze efficient, adaptive
multilevel solvers.

Future research must extend these ideas to more general problems, including
non-selfadjoint and nonlinear equations. Additionally, the estimate must be
tested for realistic problems and must be compared experimentally to alternative

techniques.
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