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Multilevel Methods for P, Nonconforming Finite
Elements and Discontinuous Coefficients
in Three Dimensions

MARCUS SARKIS

ABSTRACT. We introduce multilevel Schwarz preconditioners for solving
the discrete algebraic equations that arise from a nonconforming Py fi-
nite element method approximation of second order elliptic problems. For
the additive multilevel version, we obtain a condition number bounded by
C1 (1 + log H/R)? from above, and for the multiplicative versions, such
as the V-cycle multigrid methods using Gauss Seidel and damped Ja-
cobi smoothers, we obtain a rate of convergence bounded from above by
1~ Cz2(1+logH/R)~2.

1. Introduction

There are many engineering applications in which the main goal is to find a
good approximation for g = p Vu. Here, u is the solution of an elliptic problem
with coeflicient p. We can find an approximation for ¢ by finding an approxi-
mation for « and then applying the operator p V. This procedure may generate
serious errors since when p becomes more discontinuous, the solution u becomes
more singular and the operator p V more numerically unstable. Furthermore,
we note that in the interior of £ we have, formally, divg = f. Therefore, we
expect g(z) to be less sensitive than u(z) to variations of p(z). For instance, if
we consider the one-dimensional case with f = 0 and inhomogeneous Dirichlet
data, we obtain ¢ = constant. This is why mixed methods are introduced in
order to approximate p Vu and u, independently. Our motivation for consider-
ing the P,-nonconforming space comes from the fact that there is an equivalence
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between mixed methods and nonconforming methods; see Arnold and Brezzi [1].

The first multigrid methods for nonconforming finite elements were intro-
duced by Braess and Verfiith [2], and Brenner [3]. The existing convergence
results are based on the H2?—regularity assumption for the continuous prob-
lem. Later, Oswald [12], Vassilevski and Wang [15] proposed optimal multilevel
BPX-preconditioners for nonconforming P; elements in three-dimensional case
by using a sequence of nested conforming subspaces. No additional regularity
assumption beyond the H! is used. We note, however, that we cannot guarantee
that the rate of convergence of these methods are insensitive to large variations
in the coefficients of the differential equation; see also [11], [16], and [10]. In
this paper, we modify the Oswald preconditioner by introducing our nonstan-
dard coarse spaces Sarkis [13], and establish that its condition number grows at
most as the square of the number of levels, and does not depend on the number
of substructures and the jumps of the coefficients. To analyze our methods, we
introduce nonstandard local interpolators {13, 14] in order to convert results
from the conforming to the nonconforming case. We note that an operator simi-
lar to ours has independently been introduced in Cowsar, Mandel, and Wheeler
[4]-

This paper is very closely related to those of Dryja [6], and Dryja, Sarkis,
and Widlund [8] and we refer to [6] for some of our notation. The proofs of our
results can be found in [14].

2. Notation

A coarse triangulation of 2 is introduced by dividing the region into nonover-
lapping simplicial substructures ;, ¢ = 1,--- , N, with diameters of order H.
The barycenters of faces of tetrahedra 'r € T" are called CR nodal points. The

sets of CR nodal points belonglng to Q 08}, Fi;, 0Q;, and T are denoted by

QCE, 605E, FIR, INCE, and T$E, respectively.

DEFINITION 1. The nonconforming P; element spaces on the h-mesh (cf.
Crouzeiz and Raviart [5}) are given by

VH(Q) := {v|v linear in each tetrahedron e Th,
and v continuous ai the nodes of QCR} and
V& Q) := {v|v e V() and v = 0 at the nodes of QLY.

Note that Vh(Q) is nonconforming since V*(Q) ¢ H(Q).

For u € V}) (€2}, we define a nonconforming discrete weighted energy norm
with p = p; on ; by

(1) luIiI;‘h(SZ) = a"(u,u),
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where

(2) at(u,v) = Z Z / pi Vu- V’ud:v—ZaQ(uw)

zlheﬂ

Our discre:ce problem is given by:
Find u € V§(£2), such that

(3) a®(u,v) = f(v) Vv e V).

3. Nonconforming Coarse Spaces

In this section, we introduce two different types of coarse spacies which make
it possible to design efficient domain decomposition methods for problems with
discontinuous coefficients in three dimensions.

3.1. A face based coarse space. The first coarse space to be considered,
VE c V§{(€), is based on the average over each face FG%. Let Tzrgr and Gpgon
be the average values of u over fg f;f and Bﬂg,?, respectively, and let 0%};‘ be the
discrete nonconforming harmonic function in Q;, in the sense of (d?zi(-, -}, which
equals 1 on FGR 5.n and is zero on 6QCR\

The space V can conveniently be deﬁned as the range of am interpolation
operator I} : Vh(Q) — V|, defined by

ul@)g, = Y aren 65%().
j-'ijcaﬂi ’
The associated bilinear form is defined by:
bcl r{u,u) sz{H(l + log H/h) Z (ufcn - uamca) }.
FijCO0

3.2. Neumann-Neumann coarse spaces. We consider a feamily of coarse
spaces with only one degree of freedom per substructure; see [13]].
For each 8 > 1/2, we define the pseudo inverses /“‘?:ﬁ’ i=1,----,N, by

pi (x) = (—)7_11_T)—7 TR VT C (09:\00)
and
,u;fﬂ (z)=0, z ¢ (FfR\GQg;?) UangE.
We extend ,U,Z’ﬂ elsewhere in £ as a nonconforming discrete harmmonic function
with data on T§RUANCE. The resulting functions belong to VJ*(£2) and are also
denoted by u;,.
We can now define the coarse space VYN € V#(Q) by

VNN = span{pf pf 5},

where the span is taken over all the substructures €2;.
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We note that VN is also the range of the interpolation operator IV given
by

@) uoy = B Nu(z) = 3wl =3 apq0n (0:)° 1.

We can even define a Neuma,m}—Neumann coarse space for 8 = oo [8] by
considering the limit of the space VXV when 3 approaches oo, i.e.

VAN = span{ﬁl_i_)lrrolo piﬁ ,u:fﬂ}.
The associated bilinear form is defined by:
bgﬁNN(u,u) = a’(u,u).
LEMMA 1. Let X = F or NN. Then, for any u € V(Q)
aP (I, [ u) < Cs (1 + log H/R) a’(u, ).

All constants C; in this paper are independent of the mesh parameters, 3, and
the jumps of the coefficients across the interfaces separating the substructures.

4. Multilevel Additive Schwarz Method

Any Schwarz method can be defined by the underlying splitting of the dis-
cretization space V{*(€2) into a sum of subspaces, and by bilinear forms associated
with these subspaces. Let X = F or NN. The splitting of V*() that we consider
is given by

‘e .
GRAEEDID IR IS
k=0 jeN* JENSE

Here, N F is the set of CR nodal points associated with the space V§#(Q). The
space th C V() is the one-dimensional space spanned by é;‘, the standard
Py-nonconforming basis functions associated with the nodes 7 € NFE. For the
definitions of V} and N'* see [6].
We introduce the following operators:
i) TX : V — VX, is given by

VER(TX uyv) = a"(u,v), Vv e V.
ii) 13;‘ :%h——»ij, k=0,---,£ jeN*is given by
ah(f’;“u,'u) =a"(u,v), Ww e V}k.
iii) PPV — Vk, j € NCR, is given by

ah(lz’fu, v) = a(u,v), Vv € th.
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Let
¢
® TNy S A S R
k=0 jEN* JENCR
THEOREM 1. For any u € V}(Q)

Ca (1 +log H/R) %" (u,u) < a"(TXu,u) < Cs " (u, w).

5. A Multiplicative Version

‘We consider two versions:

)
©) Be=( I] a-2nd] I a-Bya-1%),
JENCR k=0 jeN*

and
)
(7) Ej=(I—nq Z I:’,h)(n(f—ﬂ Z Pf))(—’“‘ nTYi),
JENCR k=0 JENE

where 77 is.a damping factor such that

: ”777?{1”11;‘,1, ”77 Z }BJh”H;’h: ”7) Z é}c”H;,h Sw<2
JENFER JENF

When the product is arranged in an appropriate order, the operators Eg and
E; correspond to the error propagation operator of V-cycle multigrid methods
using Gauss Seidel and damped Jacobi smoothers, respectively; see Zhang [17].
The norm of the error propagation operators ||Eg|| HE, and [|Eg|| m, can be

estimated from above by 1 — Cs (log (H/h)) 2.

REMARK 1. In [13], we analyzed a two-level additive Schwarz method for
discontinuous coefficients. There, we cover Q0 by overlapping subregions by ez-
tending each substructure §; to a larger region. We can modify that method by
considering inexact local solvers and by covering Q in o different way. The anal-
ysis of our methods suggests two attractive ways of covering $2: by face regions
Qi = Q;UF;UR,, or by cross point regions ), ; see [6]. We again obtain con-
dition number estimates which are polylogarithmically on the number of degree
of freedom of individual local subproblems.

REMARK 2. We can decrease the complezity of our algorithm by considering
approzimate discrete nonconforming harmonic extension given by simple explicit
formulas in [13].

REMARK 3. In a case in which we have quasi-monoctone coefficients [8] and
use VH  the piecewise linear function, as a coarse space, all algorithms in this

paper are optimal.
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