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ELLIPTIC PRECONDITIONERS USING
FAST SUMMATION TECHNIQUES

L. RIDGWAY SCOTT

ABSTRACT. We introduce the idea of using fast summation methods to-
gether with Green’s function techniques to reduce the work in approximat-
ing the inverse matrix for the discretization of elliptic partial differential
equations. The resulting method has a high degree of parallelism.

There are several reasons for studying the iterative methods introduced in this
paper. For perspective, we list two. One arises in multigrid solvers, where there
is a need to have a fast method on the coarsest grid. The coarse grid equation
is solved repeatedly and may be of substantial size in engineering applications.
In parallel multigrid solvers, the “coarsest” may need to be coarser than in the
sequential case in order to keep good parallel efficiency. Another application
of these methods arises in time-stepping methods, whether linear or nonlinear,
where a particular system is inverted repeatedly in many algorithms 2. ¥
time integration is long, typically an implicit method would be employed which
requires solving a linear system. In this case, the efficiency of the linear solver
is critical. Such a system could be so small and irregular that a multi-level
procedure would not be considered. We now elaborate these two examples.

Multigrid techniques for solving the linear systems arising from the discretiza~
tion of elliptic partial differential equations involve a reduction in problem size
t0 a coarse grid. This coarse grid may be relatively large due to the need to
resolve the domain geometry (or the problem solution). Since the coarse-grid
problem must be solved repeatedly, the limiting factor in the efficiency of the
overall method may be the ability to solve the coarse-grid problem quickly. On
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the other hand, it is not necessary to solve the coarse-grid problem very accu-
rately in the context of multigrid techniques. If a fast and sufficiently accurate
preconditioner is available, then simple iteration can be used to produce a suit-
able approximation to the solution to the coarse-grid problem. We introduce
and analyze a new technique for doing this using fast summation methods [6].

In practical problems, the coarsest mesh that can describe the geometry is
quite large. Since the resulting linear system related to the coarse grid is unstruc-
tured, a popular technique for for solving it is direct factorization [7]. This has
the advantage that the repeated coarse-grid solves require only back-solves, after
the initial factorization. This can be quite efficient for two-dimensional prob-
lems if the unknowns are suitably ordered [7]. However, for three-dimensional
problems even optimal orderings lead to work estimates that are less than ideal
(cf. [3]). Moreover, the sequential nature of a back-solution makes it difficult
to parallelize efficiently. The techniques presented here have the same level of
efficiency independent of the domain dimension, and they are trivially parallel.

The basic idea of the technique is as follows. The solution to a linear system
can be written as the product of the inverse matrix and the data vector. More-
over, this has a significant amount of parallelism in that each component of the
solution can be computed independently of the others. The difficulty is that,
for an n X n system, this requires O(n?) work. However, the inverse matrix for
the discretization of elliptic partial differential equations has significant structure
that can be exploited to approximate its action with significantly less work. We
explore this in detail in the context of finite element methods. We introduce the
idea of using fast summation methods [6] together with Green’s function tech-
niques [9] to reduce the work to O(n logn) in the sequential case. The key point
is that this technique does not use any particular structure of the mesh, only
structure of the differential equation being solved. Fast summation methods can
be viewed as adaptive domain decomposition methods together with a projection
on each subdomain.

1. A Model Problem

Let 2 C R be a convex polygon and define
(1.1) a(u,v) = [ Vu-Vudz.
Q

We consider the variational formulation of the Dirichlet problem for Laplace’s
equation, as follows: find u € V := H'(Q) such that

(1.2) a(u,v) = (f,v) YveV

where f € L?(Q).

Elliptic regularity (cf. Grisvard [8]) implies that v € H 2Q) N HY(D). To
approximate u, we consider a triangulation 7 of Q, where h denotes the mesh
size of 7. Let V7 denote CY piecewise polynomial functions of degree < k with
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respect to 7 that vanish on 80 [4]. The discretized problem is the following:
find up € Vi such fchat

(1.3) alup,v) = (fiv) YwveVr.
It is well known [4] that
(]_.4) ||u — ’u,h”Hs(Q) < Chk-,_l_s ||ul|Hk+1(Q) for s = O, land1 <m< k+1.

Throughout this paper C, with or without subscripts, denotes a generic constant
independent of A.
The Green’s function, ¢*, for (1.2) satisfies

(1.5) v(z) = a(g",v)

for suitably smooth functions v, say v € Wp1 (Q) for p > d. By Sobolev’s inequal-
ity and [12] we see that

a(g®,v
(16) Il <€ s A <o

0£veW(Q) ”””vvg(n)

where % + % =1.
Correspondingly, there is a discrete Green’s function, g7 € Vi, which satisfies

(1.7) v(@) = a(gf,v) Ve Vr.
Using this discrete Green’s function, we may write the solution to (1.3) via
un(z) = a(gf,un) = (f,9;) Vz €D

If we let {z; : 1 <4 < dim V7} denote the interior vertices of 7, then the coeffi-
cients of uy, with respect to the standard Lagrange basis, {¢; : 1 <i < dimVz},
for V7 can be determined via

(1.8) up(z:) = (f,95) Vi=1,...,dimVr.

‘ Thus the gi* are closely related to the rows of the inverse matrix for the problem
(1.3).

2. Approximating the Green’s function

The basic singularity of g* is given by

loglz—y| d=2
(2.1) Gz(y)-_—{]wg_‘yﬁ_yd i>3

in the sense that there is a constant o such that

g — aG® € H(Q).
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See Figure 2.1 which depicts the discrete Green’s function with singularity near
one of the corners of a square domain. In fact, we can think of defining g* by
writing ¢g* = w”® + aG* where w*™ = —aG® on 99 and

alw®,v)=0 VYwveV

Figure 2.1. Plot of the discrete Green’s function with singularity near one of
the corners of a square domain with a regular mesh.

The integrals (f, g;*) can be approximated efficiently since the Green’s func-
tion is quite smooth away from the singularity (see Figure 2.1). Near the singu-
larity we compute the integral exactly, and far away we replace g;* by appropriate
averages. To define the process precisely, we fix z = z; € () for the moment. Let
{S;:3=1,...,J%} be a subdivision of Q consisting of groups of triangles in T
with the following property:

(2.2) diam (5;) < pinf{lz —y|:y € S8;} Vj=2,...,JF
for some constant p < co. Figure 2.2 depicts a subdivision with p=2. Thus S
consists of the triangles close to the point x whereas the other members of the

subdivision have a size comparable to the distance from the closest point to z.
We begin by describing a piecewise constant approximation. Let

(23) = ey L
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and define K*: L'(Q) — R by

Ji
(2.4 &t = [ G+ 37 [ s
S1 j=2 53
Define K : L}(Q) — V7 via
dim Vq'
Kf = E (K" f) s
=1
31 points
31'
points

Figure 2.2. Mesh subdivision (aggregation of triangles in 7) where p = 2 in
condition (2.2).

Define a function e® on § by

z() {0 Yyes;
e*(y) = .
W) -1 YyeS;,ji=2

for all z = ;. We have the following error representation:

(25) un(e) = K°f = [ @)f) d.

We can define a linear operator Z° by

v(y) Vye s
—n—le—ajé—@fsjv(z)dz VyGSJ,J?_Z

for all z = x;. Using this notation, (2.4) becomes

K*f = /Q (T%g5)(y) f(y) dy,

Iu(y) = {

and (2.5) becomes

(2.6) (un — Kf) () = /ﬂ (6F — T767) (0)F (v) dy.
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More generally, we can imagine defining a family of linear operators I% for
x € Q, each of which is the identity on (the respective) §; and such that Z%v
is a polynomial of degree r in each S;, j > 2, and that (2.6) holds. In the case
that Z%v € V}, for v € Vi, we may write

(un — Kf) () = alun, gi —I793)-

We may formally think of up = A;l f, where A;, denotes the operator associated
with the variational problem (1.3). Thus, this becomes

(A" = K) f(=) = a(un, g7, — I97),
or, since f = Apup, we may write
(Z — KAR) un(z) = a(un, gi, — I°gE)-
Let y = z; for some other nodal point, and consider the quantity
(T - KAp)un(z) — (T — KAR) un(y) = afup, e — &¥)

where e* := gf — Z*g¥. Dividing by |z — y| and taking the maximum over all z
and y, we find
lle® — eyuwl(g)
7T ~KAn)u <Clu sup ————— 22,
Il( r) h“WDIO(Q) Il h”Wéo(Q) x,yé)ﬂ [z — 9]
Thus we have proved the following.

THEOREM 2.7. There is a constant C depending only on the variational prob-
lem such that
lle” — e¥llw1 gy

IZ - KA o < C sup
hllWéo(Q) wi(Q) z,yEN Iz -yl

where e® 1= gi —T%g7.

3. Error analysis

We are unable to give a complete ervor analysis of the term arising in Theorem
2.7, but we can give some partial results as an indicator as to what might be
important factors effecting the method. We expand the expression e® — e¥ as

€ —e¥ =gi — 1795 — g, + IVg;,
= (I ~T%) (g} — 9}) — (T° ~ %) g}.

We will show that we can write
1
(31) g-gt=la—yl [ FHPa
0
where g denotes the derivative Green's function [9] defined by

(@ = )-Vv(z) Vv eV,

(32) a0 =
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This can be seen by using the fundamental theorem of calculus,

1

zr—y

[ 29ty 4o - ) = v(o) - (),
o |z—yl

and using the definition of the discrete Green’s function. Note that the integral

on the right-hand side of (3.1) defines a function in the finite dimensional space

Vi, and
1 1
/ a (g}iﬁ(z-y),v) dt=a ( / guTHeY) gy v)
0 0

because the map z — g7 is a continuous map from 0 — V.
Applying (3.1), we find

|z — yl_l I(Z—Z°) (g5 - gﬁ)”wll(g) <

Ien[(a)i{] “ (I _ Ia:) gg+t(z—~y)'

t Wi Q)

From [9], we have
1T =T Gl < CIE = I%) Fllwyey + 1T = T°) (7~ 3wy oy

where g* solves (1.2) with f being a directional derivative of a mollified Dirac
delta function [9]. Then from (2.2) we find

Jn -
1E =) Iy < €3 diam (S5 [ 2=y dy
j=2 3

A
(3.3) <cp Z/ [z —y| ™ dy
j=2"5

<Cp” /sz\51 lz—y| ™ dy
< Cp"|log(diam (51))].

By choosing p sufficiently small (or r sufficiently large, if p < 1), we can make
this term as small as we like.
Correspondingly from [11] and [9] we deduce that

IZ - Z%) (@ - d)llwr) S CNF° — Fillwzonsy)

3.4
(34) < Ch¥diam (S;)*.

Provided h/diam (S1) is sufficiently small, this term will be small.

Estimates (3.3) and (3.4) are in competition to the extent that the former
increases and the latter decreases as a function of diam (5;). The latter requires
diam (S;) to be comparable to h and then the former requires p"|logh| to be
small. For fixed p < 1, this means that r must be chosen to grow as O(log | log h)

as h tends to zero.
To complete the analysis, we need to consider an estimate for

Iz —y["* (" -Iy)gfy;“wg(a) .
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This appears to require some restrictions on the regularity of the interpolation
process. However, we postpone further analysis to a later publication.

4. Complexity of initialization

The application of the operator K requires a great deal of initial computation.
In particular, information related to the complete inverse of A is apparently
necessary. We now address the question of how much work is involved and to
what extent this work can be done in parallel. There are several contexts in
which one might be able to assess (and amortize) the cost of initialization. In a
time stepping scheme, this cost could be compared with the savings accrued over
a large number of time steps. In a multigrid application, the cost of initialization
for a coarse grid solver can be compared with the cost of a fine grid sweep. This
allows a more precise comparison, so we carry this out in some detail in an
example.

We consider an example based on regular meshes in d dimensions. Suppose
the fine mesh consists of N points, and the coarse mesh consists of n? points.
We consider the construction of the operator K on the coarse mesh. We need
to solve n? equations of the form (1.3) for f = 6%. Each of these can be done
in parallel, as they are completely independent. The complexity of solution of
(1.3) depends on the structure of the problem, but we make the simplifying
assumption that we can use multigrid and solve each one in an amount of work
O(nd).

Let us assume that the S;’s are based on the coarser meshes arising in a
multigrid solution. The formation of the required averages (2.3) can be done
as follows. We describe the process for a triangular mesh in two dimensions
(d = 2). First, we form the averages on pairs of neighboring triangles which
form a rectangle. This takes O(n?) work. Then we average these in groups of
four rectangles, forming averages over S;’s consisting of eight triangles. This
takes again O(n?) work, but produces only one quarter as many new averages.
Grouping these averages again in groups of four rectangles and forming averages
over such groups takes only one quarter as much work as before and produces only
one quarter as many new averages. Since these are progressing geometrically, we
see the overall work and storage is O(n?). The number of terms arising in (2.4)
is O(logn), but the averages of f can similarly be computed in O(n¢) work.
These averages must be computed for each of O(n?) points, but they can be
done completely in parallel.

Thus the total work for the initialization phase takes

2d
¢ (n_P__) work

for P processors provided 1 < P < n?. This is to be compared with the cost of
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a fine grid sweep, which can be done {for certain smoothers [1]) in

d
O (N?) work

for P processors provided 1 < P < N¢. Here we are assuming N 4 is large with
respect to P in order to ignore the cost of communication in, say, a typical V'
cycle.

Thus the cost of initialization will be comparable to & fine grid sweep when

(4.1) n? = O(N),

and this result is essentially independent of the number of processors, provided
1< P < nd = O(N%?), and independent of dimension. To quantify this, we note
that (4.1) holds when n = 10 and N = 100; this corresponds to a typical three-
dimensional problem [1] by today’s standards and would allow for P = 1000.
Tt also holds for n = 30 and N = 1000, and this coarse grid size corresponds
to some of the two-dimensional examples presented subsequently. The natural
amount of parallelism would be P = O(n?) = O(N 4/2) in general, and thus it is
scalable.

5. Complexity of the fast-summation algorithm

In the computation of (2.4) in parallel, the averages of f have to be ac-
cumulated at each processor. After a communication phase to be described
subsequently, each processor does

(5.1) o ("d 1;”)

floating point operations as depicted in (2.4) without further communication.
We now compare the cost of communication with (5.1).

It will not be necessary to have all averages at each processor. For processors
far away, only the coarser averages are needed. These can be accumulated as
follows. For simplicity, we assume that data is distributed in a parallel com-
puter having a network that has a d-dimensional mesh as a subnetwork. In
particular, we assumie that each processor can communicate with a neighbor in
a d-dimensional mesh simultaneously, without contention. To keep the analysis
simple, we ignore the effect of the degree of approximation r which would grow
like O(log|logh|) as h tends to zero.

First, we form the averages on groups of rectangles residing completely within
one processor; this takes O (’—’Pi floating point operations. For simplicity, let us
assume that groups of rectangles of a particular size fit precisely in one of the
processors, so that only averages over boxes (rectangles) of larger size require
an exchange of data. More precisely, we assume the set of triangles assigned to
a processor forms one of the groups Sj. In O(log P) steps, these P values can
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be accumulated at each processor, and the remaining combinations can be done
redundantly.

" Let X denote the number of floating point operations that can be done in the
amount of time corresponding to the latency of communication, and let F' denote
the number of floating point operations that can be performed in the time that
it takes to communicate one word (typical values for A would range from ten to
one hundred and for F would range from three to thirty.) Then the time for
these combinations is comparable to

O(M\log(P) + FP)

floating point operations. The data to be reduced locally corresponds to a d-
dimensional mesh with P cells. Doing the remaining combinations thus requires
O(P) floating point operations. Thus the majority of time is spent in the com-
munication of the initial averages (assuming F' > 1).

Tn a fixed number of processors around each given processor, local information
will need to be communicated. The number of such processors is bounded by
O(p%). This contributes an amount of time [5] comparable to

1] (2d [0%] (A + F%))

floating point operations, where [z] indicates the smallest integer not less than x.

If P is larger than %; (P > n%?), then the algorithm above for combining
averages over larger boxes may not be optimal. Instead a series of local combina-
tions can be done. At the first stage, there are P averages; neighbors exchange
their averages (in 2d steps) and then compute averages over 2¢ neighboring boxes.
This produces P/2% new averages. One of the processors from each group of 2¢
is chosen to exchange the resulting average with other groups of 2¢ processors
in 2d steps. These values are averaged and the value is passed back to all 2¢
processors in each subset in 2d steps. This process is then repeated recursively,
by subdividing the subsets into subsets. This clearly terminates after O(log P)
steps, since the box size is doubling at each step. The number of communication
steps is O (2%¢log P), with a constant amount of data exchanged at each step.
This corresponds to an amount of time equivalent to

0 (X2%1og P)

floating point operations. With the assumption P < n¢, this corresponds to less
than

O (A2%dlogn)
floating point operations.

Thus, the amount of time required to do the computation in (2.4) is of the
order of the communication required (or greater). For a machine with large
latency X, it could be useful to attempt to refine further the exchanges and
computation of the averages, if it is desired to have P ~ n?.
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6. Numerical experiments

We now describe some numerical experiments done to explore the viability of
the approximate inverse described in section 2. We took the simplest possible
situation, namely, a regular mesh in two dimensions. Thus Aj corresponds to
the five-point difference stencil. Moreover, we took a quite simple approach to
the averaging. In the first case, which we refer to as the “constant” case, we
approximate g¥ by piecewise constants, averaging over boxes of size 3¢ mesh
points as indicated in Figure 6.1 in the “constant-1” case and Figure 6.2 in
the “constant-2” case. More precisely, in the “ -1” aggregation scheme, there
are annuli made up of eight boxes of size 3' mesh points in a square annulus
surrounding a similar arrangement for i — 1. This is depicted in Figure 2.2.

The ¢ -2” aggregation scheme is more difficult to describe, but the boxes
utilized are apparent from Figure 6.2.

Table 6.1 indicates the spectral radius for the various approximation schemes.
The different aggregation schemes are indicated by the appendage “ -1” for the
coarser aggregation (see Figure 2.2) and “-2” for the finer aggregation (see Figure
6.2). In the “linear” cases, we instead interpolate g7 bilinearly, but not continu-
ously. For the sake of reference, we give the spectral radius of the red/black SOR,
iterative method (with the optimal w), as it is a well known iterative method
with a comparable level of parallelism.

Mesh size constant-1 constant-2 linear-1 linear-2 R/B SOR

8 x 8 0.9248 0.7031 0.3785 0.1604 0.4903
10 x 10 1.4372 1.0288 0.5075 0.2035 0.5604
12 x 12 1.9436 1.5778 0.6284 0.2345 0.6138
14 x 14 2.4531 2.0219 0.5765 0.2593 0.6558
16 x 16 3.0231 2.5137 0.8618 0.2796 0.6895
18 x 18 3.5189 2.9493 0.9377 0.2962 0.7173
20 x 20 3.9470 3.4080 0.9976 0.3096 0.7406
22 x 22 4.4126 3.8490 1.0642 0.3206 0.7603
24 x 24 4.8771 4.3090 1.2120 0.3296 0.7773
26 x 26 5.3262 4.8157 1.3855 0.3371 0.7920

Table 6.1. Spectral radius for various iterative schemes. The columns marked
“constant” and “linear” contain the spectral radius of ZT—K A4, for different mesh
schemes indicated in Figures 6.2 (“-1”) and 6.3 (*-2"), respectively. The column
marked “R/B SOR” gives the spectral radius for the red/black SOR iterative
method (with the optimal w). The “Mesh size” indicates the number of mesh
points in each direction of a regular two-dimensional mesh.

What we conclude from Table 6.1 is that the method certainly works, but not
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arbitrarily well. In particular, it may be necessary to take the estimates (3.3) and
(3.4) seriously, increasing the order r of approximation and reducing the constant
p in condition (2.2), which controls the grading of the mesh, appropriately.

We note that the matrix K as defined here is not symmetric, but it is very
nearly symmetric. We computed the norm of Z — KA, where K = HK+KY) is
the symmetric part of I, and the results agreed with those in the table to three
significant digits.
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Figure 6.1. Plot of the logarithm of the piecewise constant approximation of
the discrete Green’s function. Coarse mesh aggregation where p = 2 in condition

(2.2) as depicted in Figure 2.2.
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Figure 6.2. Plot of the logarithm of the piecewise constant approximation of
the discrete Green’s function. Finer mesh aggregation whete p = 2/3 in condition

(2.2).
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