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The Modified Vertex Space
Domain Decomposition Method
for Neumann Boundary Value Problems

JIAN PING SHAO

ABSTRACT. In this paper, we extend the vertex space domain decompo-
sition method (VSDDM) [18] to solve singular systems arising from the
discretization of partial differential equations with Neumann boundary con-
ditions by finite differences or finite elements. We give a concrete discussion
on how to deal with the null space in VSDDM so that it retains optimal
condition number independent of sizes of coarse and fine grids. To reduce
the complexity cost of VSDDM, we proposed several efficient variants VS-
DDM [6] based on Fourier approximation and a probing technique. Here,
we further reduce the cost of the probing technique in VSDDM, Various
numerical experiments have been conducted to test the efficiency of the

modified VSDDM.

1. Introduction

The aim of this paper is to modify the vertex space domain decomposition
method [18] so that this method can be applied to the symmetric positive semi-
definite systems of linear algebraic equations arising from the discretization of
elliptic systems with Neumann boundary condition by finite differences or finite
elements. For these Neumann boundary value problems, the discrete stiffness
matrix is singular and the solution is not unique. The VSDDM needs to be mod-
ified so that the results of preconditioning are orthogonal to the kernel space and
the VSDDM retains an optimal convergence rate. Our motivation is to design
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an efficient parallel algorithm for solving the Navier-Stokes equations. When our
scheme is based on the velocity and stream function, we have to solve a sym-
metric semi-positive system, resulting from Laplace’s equation with “Neumann
like” boundary conditions, in each time step. We also focus on the improvement
of the probing technique in the construction of edge and vertex approximations.
Based on the Fourier approximation [9, 14, 2, 3] and the probing technique
[7, 15, 16, 5], several efficient variants of the VSDDM have been proposed and
tested [4, 6, 17]. Here, we further reduce the cost of the probing technique in the
VSDDM for two dimensional problems. Only four instead of six probing vectors
[6] are used to multiply by the Schur complement and to form the approximate
edge and vertex matrices. Various numerical tests have been conducted to show
that the modified VSDDM has an optimal convergence rate for singular problems
with smoothly varying coefficients, and highly jumping coefficients.

In section 2, we discretize a singular problem, reduce the problem on the whole
domain to the interface and form the Schur complement system on the interface.
We discuss the properties of the Schur complement matrix. In section 3, we apply
the VSDDM to singular problems with known kernel spaces and state a theorem
on convergence rate. In section 4, we further improve the probing technique in
the VSDDM. Finally, in section 5 we conduct the numerical experiments on this
modified VSDDM with various approximate edge and vertex matrices for solving
singular problems with highly varying or jumping coefficients.

2. Neumann Boundary Value Problems

Let Q in R? be a polygonal domain. In the Sobolev space V = (HY{(Q))?, we
introduce a symmetric, bounded and semi-positive definite bilinear form a(-,-) :
V xV —R. Let (-,-) be the inner product in (L*(Q))?: (f,v) = [, f- vdz. The
kernel space is defined by

RKerA={ujueV, a(u,v)=0, VveV}

which is known for most Neumann boundary value problems.
Consider a general variational problem with a natural boundary condition in
the space V: Find u € V, and u L KerA such that

2.1y a(u,v) = (f,v), YveV,

where f satisfies the compatibility condition: (f,v) = 0, Vv € KerA.
As an example, we consider equation:

(2.2) Lu=f inQ  and % =0  onoQ,

where Lv = —Z oz (e ”d )and a,\, Za”(r) cos(n €;) with «;; uni-

formly bounded and po~mxe definite. T]wn V HI(Q) and KerA = span{1}.
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We partition the domain 2 as the the union of disjoint regions €2 of diameter
H,

Q=Uka and Qinﬂj =0 ifi#j.

These subdomains form the elements of a coarse triangulation. We denote the
union of these subdomain boundaries as I' = Uy Q. Each subdomain is further
divided into the elements of diameter O(h). So we have a fine triangulation on
the domain . Assume that these triangulations are shape regular in the sense
common to finite element theory, cf. Ciarlet [8].

By using finite element or finite difference method, we obtain stiffness matrices
Ajp and Ag on the fine and coarse triangulations respectively. These matrices
are symmetric, positive semi-definite. Denote the kernel spaces as KerAy =
{vr|Anvyr = 0} and KerAy = {vg|Agvg = 0}. Then problem (2.1) has the
following discrete forms:

(2.3) Find u, L KerA;, such that Apup =1,
on the fine grid and
(2.4) Find ug L KerAy such that Agug = fy,

on the coarse grid. Each of these problems has an unique solution if its right-hand
side is orthogonal to the kernel space.

Now we restrict the problem on  to the interface I'. By grouping the un-
knowns in the interior of the subdomains in the vector u; and those on the
interface T' in the vector ug, we can rewrite problem (2.3) as block form

(Au A )(1 )=Z A AR\ [ (ff )
Apr Abs up - Agl) Ag“}, () fs

where u(®) = ((u(fk))T,(ug!))T)T is a vector associated with Qp and up =
>k ul®*), Here u([k) is a vector corresponding to the interior of subdomain £y and

ug) is associated with the nodal points on 8. Note that each interior variable
uS—k) is associated with only one of the substructures, it can be eliminated locally
and simultaneously. The reduced global equation, called the Schur complement

on I', can be written in assembled form,

(2.5) SIIB = (ABB - AB]AI_IIAIB)IIB = Z S(k)u(Bk) =g= Zg(k)
k k

where S} = Ag}B - A“') U”))“1 4( ) corresponds to the contribution from Q.

to the boundary 8Q; C T, and g = £ — A% (Al)y—1gH)
value of f on interior points 2 and boundary pomts 8. The action of the
inverse of A(“ is equivalent to solving a local problem on Qj with Dirichlet
boundary condition. Note the reduced Schur complement is still singular i.e.

KerS = {up|Sup = 0} # {0}.

, comes from the
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Hence, problem (2.5) has an unique solution ug 1 KerS only if right-hand side
g satisfies the compatibility condition: g 1 KerS. For Schur complement system
(2.5), we have the following properties, which can be easily proved [1, 17].

LEMMA 2.1. If element uw, = (u},ul)T € KerAy, then up € KerS. If
up € KerS, there ezists ur such that up = (u}', 'u%)T € KerAy.

LemMa 2.2, If f, L KerA, then g = fg — ABIAl'IlfI is orthogonal to KerS.

LEMMA 2.3. If Ay, is a symmetric semi-positive matriz, then for any vp

v5Svp = n%in ot An o
I

where vy, = (v}, v5)T. Hence, the capacitance matriz S is also symmetric posi-
tive semi-definite.

LEMMA 2.4. For any vg, let vy, = (vf, vE)T be discreie harmonic extension
of v, i.e. (A1 Arp)vn =0. Then v5Svp = vl Apoyp.

From these lemmas, we can conclude that the direct restriction of KerAj to
the pseudo-boundary I' equals KerS. We can loosely state that KerS = KerAy.

3. The Modified VSDD Algorithm

Let the interface I' be partitioned as the union of faces I'r,;, edges I'g,; and
cross points x; : ' = (U;; ;) U (U;5 Eij) U (Uix;),  where the face F;j is the
interface of two neighbor substructures €; and €;, and the edge Ej; is the set
with all the points on the substructure boundaries in the cylinder with radius
0(H) and the central line ending by adjacent cross points of x; and x;. Let the
vertex space X; be the region consisting of a vertex x; and an overlap of order
H onto adjacent faces and edges. We restrict the overlapping so that no portion
of T is covered more than p times. Here p is a small finite integer. If Q is in 2
dimension space, the interface I' is partitioned into overlapping regions: edges
and vertex spaces.

For each subregion I, we introduce Ry as the pointwise restriction operator
which returns only those unknowns that are associated with I'. Denote as V*(T)
the space of all the grid functions defined on T, and as V¥ the space of grid
functions on the coarse mesh. Denote face, edge and vertex space submatrices by
Sp,; = R%ijSRpij, Se,; = REU.SRE,j, and Sx, = g(SRx', respectively.

The criterion for choosing the restriction operator Ry is this: for any function
g € V¥(TI') with g L KerS, Ryg shall be orthogonal to the space KerAy. Let
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RY be a linear interpolation operator from V¥ to V*(T'). Then, Ry is the corre-
sponding weighted restriction operator from the space V*(T') to the space V¥,
For most Neumann boundary value problems, the corresponding kernel space
KerS consists of linear functions. Therefore, a straightforward computation
gives that Ryg is orthogonal to the kernel space KerApy when g is orthogo-
nal to the kernel space KerS. Thus, the coarse problem Aguy = Rpg is well
defined and has only one solution uy 1 KerAg.

We solve the singular Schur complement system (2.5) by using a precondi-
tioned conjugate gradient iterative method with VSDD as a preconditioner M.
The action of the inverse of the preconditioner M involves following block cal-
culations.

Calculate up = M~1g where g L KerS :

The VSDD Preconditioner

(i) Solve subproblems on all faces I'Fi7, edges I'Fii, and vertex spaces X

SF'.'qu.-j = RF.-jg; SE',‘juE,-j = RE.’jg; Sxux, = Rxg;

(ii) Find uy L KerApg so that: Agpug = Rug;
(iii) Calculate wg = Rhupy + 2oii R};Uuﬂ.j + 25 RE.-,-UEU + ¥ R%ux;
(iv) Find wg € KerS such that wp + wp is orthogonal to KerS. Then

M_lg =wpg + REIIH + Z R";v‘.jllpij + ERgijuEij + Z R}:rqu,.
ij ij !
Remark: All the subproblems in step (i) and (ii) can be solved simultane-
ously. The whole preconditioning procedure can be rewritten in a short form:

(3.1) M~'g = RLA7'Rug+ws+ ) Rp Sp.Rr;g
ij

o— T o—1
+ Z Rgi'bEl:l]'REijg + ZRX:SXI Rx,g
ij

7

where wp € KerS is determined by making M ~!g be orthogonal to the kernel
space KerS. For problem (2.2), the vector —wp € KerS in step (iv) is equal to
the mean value of wg times a one-vector defined on the interface I'.

After obtaining the approximate solution up L KerS on the interface T
through using the PCG iterative method, we can calculate the approximate
solution of problem (2.3) on the whole domain by solving concurrently all the
subproblems defined on the substructures £ with Dirichlet boundary value ug

on 89, C T
Arrur = fr ~ Arpus.
However, the extended solution up = (u},u%)?, is not orthogonal to the kernel

space KerAp. Therefore, we have to find a function wy € KerAj such that the

approximate solution uy, + wy is orthogonal to KerAp.
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Using the general additive Schwarz framework [10, 11, 12, 138, 19], we can
estimate the condition number x of the modified VSDDM. The proof of the
following theorem is similar to that in [11, 18, 19].

THEOREM 3.1. Suppose the overlapping size is 6;, then:

Amax(M~15)
/\min(M_IS)

where C' is a constant independent of H and h.

H
k(M~1S) < SC(1+m?x?),

4. The Variants of the Modified VSDDM

Assume that © C R% It is extremely expensive to form exact edge matri-
ces Sg;; and vertex matrices Sx, in the VSDDM. This expense in computation
and storage can be significantly reduced when exact edge and vertex matrices
are replaced by spectrally equivalent approximations [6] which are based on the
Fourier approximation and the probing technique. In this section, we further
reduce the cost of forming approximations by the probing technique. We use
four instead of six probe vectors [6] in the modified VSDDM to form approx-
Imate edge matrices and vertex matrices. For simplicity, we first describe the
procedure for constructing of these probing approximations on the common edge
I'Eii of two adjacent rectangular substructures ; and ;. This technique can
easily be extended to more general geometries. On the edge ['F4 | we construct
a symmetric tridiagonal matrix 5’)3,_,- to approximate the exact Schur comple-
ment Sg,; by using matrix vector products of Sg,; with two probing vectors. A
heuristic motivation for using the tridiagonal approximations is that the entries
of each Sg,; ‘decay rapidly away from the diagonal : (Se:; )im = O(UTL;—);)
for I, m away from the diagonal [14].

Let us introduce two probing vectors:

p1 2[1,0,1,0,...]7" and  py = [0’1’0,1,,”]7“
From the fact

ay by

1 0 ay bl
bioaz by 0 1 by + by as
S'E.,‘ [p1,p2] = b as s I 0= as by + b3
by a4 0 1

bs + b4 a4

we can construct a symmetric tridiagonal approximate matrix Sg,; by letting

{S‘Eljpl 3 5’8131‘)2] = [SE.jpl 3 SE;,‘FZ]'
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Computing the matrix vector product Sg,;pi requires solving one problem on

each sub-domain ; and Q;. Hence, an approximate submatrix S'E“. can be

obtained from the matrix vector products Sg,; py by using the algorithm [15, 16]:
Symmetric Probe Algorithm

For I=1,---,ny
o =4 SEsP) if 1is odd
T (SEi;p2) if [ is even

by = (SEijp2)1
For 1=2,---,m;—1
b = { (Se;pi )i — by if | is even
(SEi;p2)i — by if 1 is odd .

THEOREM 4.1. Assume that Sg,; is a symmetric diagonally dominant ny; x
n;; M-matriz and

l(SEij)’,I‘ > I(SE;'J')I,I+1I > 2 I(SEij)I,ﬂijI Jori=1,2,... s Rig .

Then the symmetric approzimate matriz S'E'.j is also an M-matriz.

Proor. Without loss of generality, we assume n;; = 2k + 1. From the as-
sumption, we have

(41) I(SEij)k,Il > I(SE.']‘)SJ; if s S kvl <t
and for 1 <1< ny; :

o = (Se; it + (Se 3+ -+ (SE i2ker 20, iflisodd
" (Seohz+ (S s+ o+ (SE e 20, ifliseven .
b1 = (Seg;; 12+ (Se; )18+ -+ (SEi;)1,2e 0
follows from the property of M-matrix Sg,; . Then,
las] = |b1) = (Sei; )11 + (SEs 2 +(SE )1a+ -+ (SE e, 2 0.
The equation by +by = (SE,; )21+ (Sk,; )23+ -+(SE,; )2,26+41 £ 0, implies
by = (Se;)21+(SE;)23+ -+ (SE,;)22041
— (Se;)12-(Se ha— = (SE )12k <0,
by using inequality (4.1). Then,

las] — b1} = b2 = (SE,]‘ )22 + (SE,, Yoat -+ (SE,J )22k
+ (Se;)h2+(Se iat -+ (S )2
+ (Se,;)21+(SE; )23+ -+ (SE,;)2,2k41
- (Se,; 12— (SE )1a— = (SE ;)12
= (Sg,)21+(Se,;)22+(SE,;)23+ +(SE,;)2n,; 2 0.
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By induction, for any 3 <1 < n;;, we have

b = (Sg,h1+(Sey)is+ -+ (SE; i 2k+1
- (Seyhi-1,2— (SE;)i—1,a— - = (SEi 1-1,2k
+ bi_s for | even,
and
by = (Sey;hz+ (Se;ia+- -+ (SE; 2k
~ (Sey)i-110 = (S hi-1,3 — - — (SEi; Ji-1,2041
+ bi—g for ! odd.

So, we can obtain & < 0 through using b3 < 0 and b;_3 < 0, and inequality
(4.1). Hence,

lar] = 1b1-1] = 1bi] aj+ b1+ b

= (SE','J‘)I,l + (SE"_.,')I,Q + (SE,‘]' )1,3 + -+ (SE,‘j)I,n,‘j 2 0.

!

Thus, the tridiagonal symmetric matrix Sg, ; is positive definite. Note that above
inequalities can be replaced by strict inequalities, if Sg,; is strictly diagonally
dominant. O

The assumption of this main theorem is always true according to our numerical
tests. However, the theoretical proof of this assumption is still an open question.
To minimize the computational work and the approximate errors arising from
boundary value on other edges in the constructing procedure of all approximate
edge matrices, we will specify the same probe vectors p;, either on all horizontal

edges simultaneously or on all vertical edges simultaneously. Let’s define p, for
k=12

| pe on all horizontal edges
Py = { 0 on all vertical edges
and
|0 on all horizontal edges
Pi2 = { Pk on all vertical edges .

which are as drawn in Fig.1.

Analogously, these approximations S E,; Tesulting from the simultaneous probe
vectors p; above preserve strict diagonally dominance and positive definiteness.
S~ince the edge matrices S'E, , are tridiagonal, it is cheap and easy to calculate
SE; gE,;-

THEOREM 4.2. If the Schur complement S on I is a siricily diagonally dom-
inant M-matriz, then all the edge approzimations Sg,; obtained from above are
strictly diagonelly dominant and posilive definite.

Proor. From the assumption that M-matrix S is strictly diagonally domi-
nant, Sg,, can be proved to be strictly diagonally dominant in the same way as
in the proof of Theorem 4.1. 3
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pk’ k=1,2. p2+k! k=1,2

0 0 0 75 e i

i i L pi 0 0 0 0
0 b 0 p; % 11

D: Di Di D q q 0 0
0 0 0 i p; i

Di ¥ D i qa ny q n
b 0 0 7 121 Pi

FIGURE 1. Probing Vectors in the Modified VSDDM

The probing approximate vertex matrices S x; can be easily constructed from
the results of probing matrix-vector products {Sp;}i.;. Details of this tech-
nique can be found in [6]. The same argument as in [6] can be used to show
that the vertex approximations S 'x, obtained from above probing procedure are
diagonally dominant if Schur complement S is a diagonally dominant M-matrix.

5. Numerical Results

Now we present the numerical tests on the convergence rate of the modified
VS methods with various edge and vertex approximations. The tests were per-
formed for scalar elliptic problem (2.2) with Neumann boundary condition. The
following three coefficient functions have been used in our tests:

(i) a(z,y) = 1, the Laplace operator;
(i) a(z,y) = e%¥ highly varying smooth coeflicients;

(ii1) Highly discontinuous coeflicients defined as Fig. 2.

The square domain [0, 1]° is first divided into 1/H? square sub-domains with
uniform size H. Then each square sub-domain was triangulated into finite el-
ement with uniform mesh size h on the square domain. These problems are
discretized by standard finite element method with five stencil.

u is a randomly generated solution of the scalar elliptic problem normalized
so that the mean value of u is zero. The integer R is defined to be the number
of iterations required to reduce the A-norm of the error e, = u —u, by a factor
107% . We list the iteration number K and the estimated condition number &
for these discrete problems with various coarse mesh size H and fine mesh size
h in the following tables. We fix the size of vertex space matrices as 5 x 5. So,
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a = 300 a=10"* ja = 31400 a=5

a=0.05 a=6 a=0.07 | a=2700

a = 108 a=0.1 a = 200 a=9

Il
I

a=1 a = 6000 @ a = 140000

FiGURE 2. Coefficient Function a(z,y)

the overlapping size is h/H = H~'/h~!. FVS and PVS represent the modified
VSDDM with the Fourier [6] and the probing approximations, respectively, on
edges and vertex spaces. In our program, all sub-problems on coarse grid and
on sub-domains are solved with high precision. The numerical results show that
the modified VSDDM still has an optimal convergence rate for elliptic problems
with Neumann boundary condition.

To compare six probing vectors with four probing vectors in probing VSDD
method, we list the results in Table 2 for problem (2.2) with harmonic Dirichlet
boundary condition and various coefficient defined above. Ovlp is denoted as
the overlapping size. It can be observed from these numerical results that our
probing technique improves efficiency as well as retains the optimal convergence.
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