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A Multi-color Splitting Method and Convergence
Analysis for Local Grid Refinement *

Tsi-min Shih, Chin-bo Liem, Tao Lu and Aihui Zhou

Abstract

This paper consists of two parts. In the first part, a multi-color split-
ting method is proposed for a multi-processor computer, which can be
viewed as an algorithm combining successive subspace correction with
parallel subspace correction. In the second part, error estimation and
numerical test for a discrete Green’s function are presented on local re-
finement grids.

1. Algorithm of Splitting by color

The features of a typical SIMD ( Single Instruction Multiple Data) computer
are:

e it contains many processors and hence it works highly in parallel;
e it works highly synchronously.

The method of splitting by color is specially designed for the SIMD archi-
tecture. We illustrate it as follows. Consider a second order elliptic equation

d
o 1) . d
= _ i C 1.1
Lu= E c')mi(a”(?xju) f, inQCRY (1.1)

,j=1

u = 0, ondQ.

The associated variational problem is to find u € HE(Q) satisfying
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d
Ou Ov 1
= g = . 2
a(u,v) = /Q . E %35y 7 dx /Qf'ud:c, Yv € Hy(2) (1.2)

%,j=1

In order to solve (1.2) on a SIMD computer, subdivide §2 into nonoverlapping
subregions: Q = UQZ-J-, where €;; denotes the j%* element belonging to the ‘"
color (i = 1,2,---,Ng;j = 1,2,---,m), and assume that for each color 3, Q5
and Q;, are disjoint, i.e. Q;; Ny =0, Vi, k =1,---,m and j # k. Let H
denote the grid size of the initial grid {Q;;}, h denote that of the refined grid,
and S denote the corresponding finite element space. If N (€4;) denotes the
nodal index set of 5, V;; = Span{p), € Si;k € N(Q4)}, and V; = U= Vis
then

S§=Vi+Va+---+ V.. (1.3)

We are now looking for uy, € SP satisfying

a(u",v) = (f,v), YveSh (1.4)
Define the projection operator P; : S& — V; satisfying

a(Pu,v) = a(u,v), YoeV;
and P;; : S} — V;; satisfying

a(Piju,v) = a(u,v), Vv € V.

Evidently, P, = Z;"zl Py and PijPy, =0 (j # k).
Algorithm 1 (Parallel Algorithm of Splitting by color)

Step 1. Choose an initial u® € S» and relaxation factor w € (0,2). Set n:=0,
and i := 0.

Step 2. For j =1,2,---,m, solve for 6;; € V;; in parallel, according to
a(8ij,v) = (f,v) — a(u™*/Ne v), Wu € V.
Step 3. Set unH(+1/Ne — yn+i/N. +wdT 8.

Step 4. If i +1 < N, let 5 := i + 1 and goto Step 2;
Ifi+1= N, leti:=0,n:=n+1 and goto Step 2.
Denote the error by e"t%/Ne = o — y+i/Ne obviously

et = (I-wPy){I —wPy._1)- (I - wh)e”

Ne m

= HH(I—wH—j)en. (1.5)

i=1j=1
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Hence Algorithm 1 mainly belongs to the framework of SSC{successive subspace
correction), but Step 2 is a PSC(parallel subspace correction) algorithm [8].
In order to estimate the convergence rate of Algorithm 1,let T =P +---+
Py, . Evidently,
Amaz(T) < |IT|| £ Ne. (1.6)

Proposition 1. There exists a constant C > 0 independent of H and h such
that
h2
Amin(T) > C— (1.7)

Proof. Let ;; = | Supp(p), Quj DD i, and {{%;} be an open covering
PEV;;
of Q. Construct the piecewise constant functions:

oy 1 zeQy, =12, ,m,
Qi(x) = { 0, elsewhere,
and (@)
i\ L
QOl(.'L‘) = &N, s
>im Qi)
then zfv;l ¢i(z) = 1. Notice that diam({;;) = O(H), and consider
N, N
wh = I =Y T (e?) = Yl (18)
i=1 i=1

where u? = I"(p;u") € V;, and I" is the interpolating operator on Sk. By the
theory of inverse estimation, we have

m m
an(ul,uf) = D ag, (ulul) SC YOI,
j=1 j=1
J; R
< Gy >l q,, (1.9)
§=1
Again from
h h 2 < h\2
Zuu o, = Z/ (1" (g < cgz/ (u"y2dz,
we have
N N, m
Sa(ulul) < C5Y Y / (u")?dz
=1 =1 j=1 Y Skij
2 H2
< 04%/(Uh)2dméCsa—fa(uh‘,uh). (1.10)
Q

Finally, (1.7) follows from Lions’ Lemma [5].
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Corollary 1 (cf.[8]). Thenorm of E = (I—wPy,)--- (I—wP)) can be estimated
by
_ CRP(2-w)

EP <1~ 22
V" <1- ma v vy

(1.11)

2. Estimation of the Convergence Rate of Local Grid Refinement

The error estimation of the composite grid method, in particular the error
at the neighbourhood of singular points, is essential for engineering problems.
Ewing, Lazarov and Vassilevski [2] discussed the error behavior of the finite
difference scheme. For the finite element scheme, under the assumption that
u € H'*(Q) (0 < a < 1), Lin and Yan [4] proved that the superconvergence is
of O(H*2 + h*) in the H'(Q)-norm. From the engineering point of view, the -
accuracy of solving a problem with logarithmic singularity on a locally refined
grid is very important. For example, consider the following elliptic equation

Lu = 6(xy —2z1)6(z2 — 22), inQcCR? (2.1)
u = 0, ondf,

where §(z) is the Dirac-function and z = (21, 2,) € Q is a singular point. The
solution u is the Green function G, (z, x2) which has a logarithmic singularity

0

at z. In fact, G, ¢ H(Q), but G, ewl(),1<p<2.

If z € O CC N, let H be the grid size of the original coarse grid of €},
h be the grid size of the refined grid of 91, SF(Q2) c HL(Q), St C HL(Q)
be the linear finite element spaces on the original coarse grid and the refined
grid respectively, and H, = S () + S2(€;) be the finite element space on the
composite grid.

Denote the finite element approximation of G, by G which satisfies

a(GE,v) = v(z), Vv € H,. (2.2)

Let 2 be a small subregion of Q;,and z € Qy cC O CC Q. We have the
following error estimation of GH on €.

Proposition 2. If (1) the coefficients aij,bi; € W(Q), and (2) [a;;] is uni-
formly positive definite, then there is an L, () estimation

IG: = Gl llbopen < CRHYP"' + H?)|ImHP, 1<p<2  (23)

where || - |x »., denotes the WE(Q0) norm, C > 0 is a constant that is indepen-
dent of h and H, but dependent on )y and ;.

Proof. Construct a function w(z) € C5 (1) satisfying w(z) = 1, Vz € Q.
Also for all p € Lq(Q),(% + % = 1), construct an auxiliary function w(z)
satisfying:

Lw = ¢, inQ, (2.4)

w 0, on 99.
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Evidéntly, by the Sobolev Embedding Theorem,
collwllieon < llwllzge < Cligllogn, 2<g<oo. (25)
Denote wu by 4. Since G, € WI} (2),1 < p < 2, from integration by parts, we
have
(G.—GH,p) = o(G.—GH,w)+1=aq,(G,—GH @)+
Ch||G, - Gful,p,ﬂl lwllz,q0, +1

<
< ChG: = Gf1pallolloge + 1, (2.6)

where

T~
i

2
0w Ow a Ow o
[ + gz (@5 5 w)HG. — GF)ds

ii=1 “J c')xz a.’ﬂj
CliG: = Glo,1,allwl,con
CllG: = G lo1allello,g0- 27
Substituting (2.7) into (2.6),

[(G= = G¥,9)| < CRIIG: ~ GYll1p0 + 1G: ~ GTllopa)lelogn.  (28)

z

IAIA

Using the following two known results [9],
IG. ~ G l1p0 < CHYP I H|,
Gz ~ G lloa0 < CH* I HP,
it follows that ‘
IG: = G p0 < IG: = CElopa < CHP" + H)|m A
With more detailed analysis [3], the following estimations can be obtained:
16~ 6Zlopa < { oSt iy, TS

and
_g¥ C(h+ H)R/P~2|Inh[!/?, 1< p < oo,
G — G 1m0 < { C(h+ H?)|Inh)|, p=1

Numerical Test. Consider L = A, 2 = (0,2) x (0,2) in equation {2.1) with
z = (1,1). Locally refine (1/2,3/2) x (1/2,3/2) by size H/2 and (1/4,5/4) x
(1/4,5/4) by size H/4. Computed results using the Fast Adaptive Composite
Grid Method (FAC)[6] for G, (599/600,601/600) are as follows:

Uniform grid Local refinement grid
H Error CPU H Level No. | Error CcrU
1/600 | 1.30E-2 | 12.84 1 1.30E-2 | 12.84
1/1200 | 2.61E-3 | 1175.74 | 1/600 2 2.12E-3 | 243.97
3 4.53E-4 | 452.96
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