Contemporary Mathematics
Volume 180, 1994

Boundary Elements in
Domain Decomposition Methods
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ABSTRACT. We give a brief survey of domain decomposition methods with
boundary elements for the model problem of the potential equation, and we
offer different parallel algorithms for solving these problems numerically.

1. Imtroduction
Let us consider the Dirichlet potential problem

—diva(z)Vu(z) = 0 forz € 2 C IR?,
u(z) = g(z) forzel =00,

where {2 is a plane, bounded domain with a piecewise Lipschitz continuous
boundary I". Suppose

(1.1)

(1.2) a(z) = a; = constant in ),

where the Q; are non—overlapping subdomains in a given domain decomposition
P
(13) ﬁ: U ﬁz s I‘i =891 y Qiﬂﬂj =@ andI‘ij =§iﬂﬁj fOl‘i;éj.
i=1
Now we introduce the skeleton I'g and the global coupling boundary I'c by

P
(14) Is=|J T, Te=Ts\T',

i=1
and a g—dimensional set w of all cross points.
1991 Mathematics Subject Classification. Primary 65N55, 65N38; Secondary 68Q22.
This work was partially supported by the Priority Research Program “Boundary Element

Methods” of the German Research Foundation DFG under Grant Nb. We 659/8-5 .
This paper is in final form and no version of it will be submitted for publication elsewhere.

® 1994 American Mathematical Society
0271-4132/94 $1.00 + §.25 per page

343



344 OLAF STEINBACH

The variational formulation of the model problem (1.1) reads:
Find u € H*(Q) with uir = g(z) such that

(1.5) /a(m) Vu(z) Vo(z)dz = 0
Q
for all test functions v € H}(Q) .

Before we apply the domain decomposition to (1.5) , we should introduce bound-
ary integral equations corresponding to the local potential problems by use of
the Calderon projector

1
’I.L|I‘i _ -2'I — K»L V'; 'U'|F,- _ ) U'|I‘.;
(16) ( t; )“( D; 31+ K] t; G t; ’

where V; is the simple layer potential, K; the double layer potential, K its
adjoint, and D; the hypersingular operator. Further, t; = g—::m denotes the
normal derivative of the potential v with respect to T';. From (1.6) we get two
representations of the local Steklov—Poincaré operator [12]:

t; = Siu[pz_ = V;._I(%I -+ Ki)ulf‘i
(1.7
= [(GI+ KDV (G + Ki) + Di] uy,
Using the given domain decomposition (1.3} and Green’s formula we may rewrite
(1.5) into a variational formulation on the skeleton.
Find u € H'/*(T's) with wr = g(z) such that

P

(18) Z /Siu]pi ’Uir‘i ds =0

for all test functions v € Hg/ 2(rg) .

2. Iterative methods with the “Symmetric Formulation”

One possibility for discretization of the Steklov—Poincaré operator in (1.8) is
to replace the corresponding normal derivative t; by the second equation of the
Calderon projector. Furthermore, we need the first boundary integral equation
to compute the local Cauchy datum [3].

Find u € H'/*(Ts) withwr = g and t; = g—%ll‘ € H~'/2(T;) such that

i
o

D
(2.1) ; % {<Diulri’vil‘i)1’i + %(ti, v + (G, Kivll‘)ll‘:’}

a; ({7, Vita)r, — $(ro, wir e, — (ri, Koue)r,) = 0

for all test functions v € 1173/2(1“5) andt, € H/2(I)) andi=1,...,p.
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The equivalent discrete system can be written in the block form

Va —3Mp ~ Ky, (I
&2 (%MJ+KJ D, )()"(z)

where t denotes the vector of the local coefficients of the ¢; and u the coupling
values of the potential on the skeleton. The system matrix is obviously block
skew—symmetric, but positive definite. Note that the first block equation in (2.2)
consists of local equations only; this means that we can compute

1 (1 _
(2.3) t, = Vhﬂ-l (iMh,i + Kh,z’) yr, + Vh,ilim

I

e

independently on the subdomains. Replacing the corresponding values in the
second block equation, which describes the coupling across the boundaries, we
get the BEM~Schur complement system

(2.4) [(%MJ +K,"{> vt (%Mh +Kh> +Dh] u=f

with a symmetric and positive definite stiffness matrix S, . Therefore we can
use a preconditioned conjugate gradient method to solve (2.4) in parallel. We
note that the action of S includes the inverse of the simple layer potential V.
However, in (2.3) we need only the action of the local operators Vh_’il, this can
be done by local preconditoned conjugate gradient methods.

Alternatively, for solving system (2.2) without these additional inner iterations
we can use a result of [2] . Suppose, that we have given a symmetric and positive
definite matrix Cy which is spectrally equivalent to V;, satisfying the inequalities

(2.5) 1(Cvt,t) < (Vat,t) < 72(Cvt,t)

for all vectors t of the structure according to (2.2). If 4 > 1, we can define a
new inner product by
)

o

and we have as a main result of [2] that the transformed matrix

2.7
Cy'Vi —Cy (3 My, + K3) )
B = B
AMT + KE7)C7HCy — Vi) Da+ (3My] + KOy (3Mn + Kp)
now is self-adjoint and positive definite with respect to the newly defined product
(2.6). Moreover, there hold spectral equivalence inequalities

() I () ()] <l

)} = (Vh— CV)&T) + (u,0)
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with

I 0
2.9 R = .
29) (o Dy + (AT +KJ>Vh—1<%Mh+Kh>)

Therefore we can use a parallel preconditioned conjugate gradient method with
respect to the transformed matrix (2.7) in the special inner product (2.6) to
solve the original system (2.2) [10]. As preconditioner for the discrete Schur
complement in R we use the BPS preconditioner, as proposed in [1].

3. Dirichlet Schur complement CG with hierarchical bases

In the methods described above it is necessary to discretize the local hypersin-
gular operators D;, which may be complicated. If we use only the first integral
equation, we will get from (1.8) a new variational formulation:

Findu € HY?(T's) and t; = & € H™Y/2%(I";) such that

on|T;
P
> ailtiyr)r, = 0
(3.1) i=1
(i, Viti)r, — {7, wr)r, — (i, Kiwpe,)r, = 0

for all test functions v € Hé/Q(I"S) and; € HV/2(I)) andi=1,...,p.
In analogy to (2.2) we can write the equivalent discrete system in the block

)-(2)

M7 0
(3.2) "o
Vi -Q‘Mh + K3,

Using (2.3) we can replace ¢ in the first block equation to get the discrete Dirichlet
representation Sp of the Steklov—Poincaré operator

Ih

&2

(3.3) M, Vv, (%Mh +Kh) u=f.
According to the properties of the symmetric representation of ), in (2.4) we
can symmetrize Sp. Therefore we can use a preconditioned conjugate gradient
method to solve (3.3) in parallel.

If we use the BPS preconditioner, a transformation to a hierarchical basis is
required to solve a coarse grid system to get the preconditioned values at the
vertices. Here we use this idea already with respect to the ansatz functions. We
introduce a coarse grid function

g
(34) ug(z) = Zukapf(z) , ug =ulzg) forallzy, € w,
k=1
to a given function u(z). Then the resulting fine grid function @(z) =u(z)—ug ()

vanishes at all cross nodes z; € w. In general, this decomposition is not unique.
Choosing discrete harmonic functions as basis functions in (3.4), the projection
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of a function u(z) onto the coarse grid is unique. Such basis functions can be
described as follows:

() o (1) =6 forallz; ewandk=1,...,q,
(ii) ¢ (z) are piecewise linear on all edges I';j,
(iii) A (z) =0 in all subdomains Q; ,I=1,...,p.

Using the hierarchical bases constructed above the Galerkin discretization of
(3.1) leads to the block system

Ky Kyg 25 _ I
(3.5) (KEV Kg )(ug)“(i‘;>

where every block matrix describes the action of the discrete Steklov-Poincaré
operator (3.3) with respect to the corresponding basis functions. Finally we
use a preconditioned conjugate gradient method to solve the Schur complement
system to (3.5)

(36) [KE - KEvK;lKVE] gg = i,

which requires solving a coarse grid system in every iteration step.

4. Numerical results

As a simple example, we consider the problem (2.1) with a constant coeffi-
cient function a(z) = 1 and a domain decomposition of the unit square into 16
subdomains. Method 1 is the symmetric Schur complement system (2.4). The
conjugate gradient method with respect to the transformed matrix (2.7) is the
method 2. Both cases result from the symmetric formulation including the full
Calderon projector. In the other cases of the Dirichlet formulation it is necessary
to solve local Dirichlet problems using the first boundary integral equation to
realize the Steklov—Poincaré operator. Then we get method 3 with respect to
the normal nodal bases and method 4 by using hierarchical bases.

All methods described above are iterative schemes which stop at a predefined
bound with respect to a residual norm. For a relative error reduction of & = 1076
we get the following results.

Table 1.

Nodes per | Symmetric Formulation | Dirichlet Formulation
Subdomain | Method 1 | Method 2 | Method 3 | Method 4
16 12 21 12 9
32 13 23 14 11
64 14 24 15 13
128 15 25 16 16
256 17 26 17 19
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As preconditioners of the coupling nodes we use the BPS preconditioner. In
all cases presented we need locally spectral equivalent matrices to the simple
layer potentials V3 ; ; here we use circulant matrices derived from the single
layer potential with respect to a circle [11].

All the algorithms presented in this paper can be extended to more general
problems, as e.g., to linear elasticity and, moreover, to three—dimensional prob-
lems.

All computations are executed on different parallel computer systems like the
Parsytec MCS3, the Intel Paragon, or at workstation clusters.
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