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ABSTRACT. ILU and MILU are more or less the standard for precondition-
ing, but their inherent sequentiality precludes efficient parallel implementa-
tion. Blocked variants improve the parallelism, but generally they increase
the iteration count.

To improve this we adapt approaches from [2, 4], and we define param-
eterized block preconditioners based on subdomains with minimal overlap.
Although the choice of the parameters is an open problem, numerical exper-
iments suggest that the iteration count can be kept almost constant going
from one to 400 subdomains. We also report on the performance on a 400-
processor Parsytec Supercluster at the Koninklijke/Shell-Laboratorium in
Amsterdam.

1. Introduction

For efficient iterative solvers on massively parallel computers, the iteration
must be efficient and the increase in the number of iterations must be low.
Here we focus on preconditioners that have a simple implementation to facilitate
their use in large existing programs ported to massively parallel computers. In-
complete Block LU (IBLU) preconditioners with the blocks corresponding to the
local equations of the subdomains are good candidates, but they tend to increase
the number of iterations significantly. We use adaptations to the approaches in
[2, 4] to overcome this problem. We take subdomains with minimal overlap,
and we modify the local equations on the artificial boundaries. The substitution
of the artificial boundary conditions into the matrix gives the so-called gener-
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alized Schwarz enhanced matrix (SEM) [4]. From this matrix we use the TLU
factorizations of the local equations to form the IBLU preconditioner.

2. Construction of the preconditioner

We describe the construction for a one-dimensional decomposition of a two-
dimensional domain and the extension to higher-dimensional decompositions and
more general meshes.

2.1. One-dimensional decomposition. We assume a block tridiagonal ma-
trix which has been derived from the well-known 5-point discretization star. We
decompose the domain in the y-direction and we duplicate on each subdomsin a
number of grid lines from the neighbouring subdomain. Figure 2 gives the ma-
trix structure for duplicated grid lines corresponding to an overlap as indicated
in Figure 1, where uy corresponds to the approximation on the k-th grid line in
the y-direction, and we have duplicated two grid lines, uj_, and us. We will use
the artificial boundary conditions

(2.1) Brug_y +onug —uiy; = Brul | +oul —ud

(2:2) Bauf +opuf | —ul , = Bau? + 0‘2qu—1 —ud ,,

to give equations for the exterior grid lines uf, , and uf_2 that are substituted
into the SEM to construct the generalized SEM. If we have only one overlapping
grid line we cannot use the parameter 8. We can use very general boundary con-
ditions, because the generalized SEM only defines the IBLU preconditioners, and
the only requirement for convergence is the nonsingularity of the preconditioner.

2.2. Higher dimensional decomposition and general meshes. Higher
dimensional decompositions and more general meshes make the construction
of the generalized SEM directly from the matrix complicated. Therefore, we
adapt the discretization star on the boundaries of the subdomain instead; see
[1]. For example, a boundary condition like (2.1) leads to the discretization
star in Figure 3. This approach also permits artificial boundary conditions in
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FIGURE 3. The adapted discretization star
directions non-orthogonal to the boundary; see [3].

2.3. Definition of the preconditioner. Let Q denote the original domam,
and let Q be the decomposed domain with overlap. The operator S : Q — 0
assigns to a grid point in € the value of the corresponding grid point in © (also
for duplicates). The operator J, : { — Qis a projection using a weighted
average on duplicate grid points. The operators S and J,, satisfy the following
relations. J,S: 2+ Q =1, and SJ, : Q — § computes a weighted average
over duplicate grid points and is the identity operator on other grid points.

From the generalized SEM () — Q) we compute the (block) factors I, D and
U. We define the following operators over €, J,L~18, J, DS, and J,, U8, and
we define the preconditioner as K : )+ Q = J,U-18J,D8J,L~18. We can
reduce the communication cost by modifying D such that DS = SD for some
D : Qs Q. This only requires averaging the entries of the diagonal matrix D
corresponding to duplicate grid points. Then, K is defined by

(2.3) K: Q- Q=J,U'DSJ,L78.

3. Experimental results

For the performance of the preconditioner, the iteration count is much more
important than the extra computation for the overlaps and the communication
with a few pearby processors. Therefore, we focus on the iteration count and
discuss other overhead succinctly at the end of the section. We show only the
potential of these preconditioners for reducing the number of iterations. For a
discussion on the choice of parameters and the convergence see [1].

The first test problem is the Poisson equation on the unit square, —Au = 0,
withu=1fory=0,u=0fory=1, and v’ =0 for z = 0 and = = 1, where ¢/
is the outward normal derivative on the boundary. We discretized this problem
on a 100 x 100 grid using the finite volume method. The second test problem is
given by —(uUgz + Uyy) + bz + cuy = 0, on [0,1] x [0,4], where

b _ 10 for0<y<land2<y<3,
@V =1 10 fori<y<2and3<y<4
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TABLE 1. Problem 1 TABLE 2. Problem 2
with local precondi- with local precondi-
tioning. tioning.

decomposition || iteration count decomposition || iteration count
Ix1 2 x b0+ 17 Ix1 11 x50+ 7
1x5 3 x50+ 26 1x5 10 x 50 + 35
1x10 4 x50+ 2 1x10 11 x 50 + 33
1x20 4x50+6 1x20 12 x 50410
20 x 20 5 x 50 + 46 20 x 20 19 x 50 4 40

and c =10, withu =lony =0,u=0o0ony =4, v =0 for z = 0 and
z = 1. We discretized this problem on a 100 x 200 grid using the finite volume
method. Using these problems we can compare the effects of the preconditioners
for diffusion- and convection dominated flow.

We used GMRES(50) for both test problems to compare the convergence
results. Tables 1 and 2 show the results for several decompositions without
overlap. The one-dimensional decompositions are all in the y-direction. We
give the iteration count as the number of complete cycles plus the number of
iterations in the last cycle. We see that the effects of the decomposition are
much larger for problem 1 than for problem 2.

Tables 3 and 4 show the iteration counts using overlapping grid lines and
adapted artificial boundary conditions (2.1,2.2). We give the results without
adaptation, o, 8 = 0 and (if different) for the optimal o with 8 = 0 and for
the 1 x 20 decomposition also with 8 # 0. Our experiments indicated that
the optimal @ increases if the number of subdomains increases, and that the
convergence is not very sensitive to the choice of a. Although the iteration
count as a function of the number of subdomains behaves differently for the two
problems, the influence of the parameters o and 8 seems similar.

‘We will now discuss the convergence using preconditioners derived from two-
dimensional decompositions on a 20 x 20 processor grid. For simplicity we have
taken w, the overlap size, and @ and § (when appropriate) the same for all

TABLE 3. Problem 1 with adapted boundary conditions.

ovi=1 ovi=2
decomp. || « it.count af/B it.count

1x5 0.0(2x50+280.0/00(2x50+25

0.1]2x50+260.4/0.0|2x50+24

1x10 [|0.0]2x50+39|0.0/0.0|2x350+38
0.4 ]2 x50+ 37

1x20 {{0.0{3x50+17(0.0/00]3x50+14

0.7!3x50+8 |0.6/0.0]|2x50+37

0.7/0.4 | 2 x 50 + 17
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TABLE 4. Problem 2 with adapted boundary conditions.

ovl =1 ovl =12
decomp. || o it.count a/B it.count
1x5 0.0]9x504+15 |0.0/0.0 |10 x50+ 17
0.4/0.0 | 9 x 50 + 45
1x10 [10.0|11x50+440.0/0.0] 11 x50+ 11
04110x50+1 |0.3/0.0]9x50+41
1x20 {10.0{10x50+22|0.0/0.0 |10 x 50 + 28
0.510x50+8 |0.6/0.0]10x50+1
0.6/0.1 | 9 x 50 -+ 47

TABLE 5. Problem 1 TABLE 6. Problem 2

with adapted bound- with adapted bound-

ary conditions on a ary conditions on a

20 x 20 processor grid. 20 x 20 processor grid.
a G | iteration count a || iteration count
0000 7x50+26 0.0 16x50+10
0500 3x50+15 02 13x50+41

directions.

Table 5 shows the results for problem 1 with two overlapping grid lines, and
Table 6 shows the results for problem 2 with one overlapping grid line (best
choices). The results for @, 3 = 0 show that for two-dimensional decompositions
without adapted boundary conditions the convergence may be poor. The other
results are for the optimal values for o and 8. Our experiments indicated that for
two-dimensional decompositions the iteration count is much more sensitive to the
choice of parameters than for one-dimensional decompositions. The results show
that we can keep the increase in iterations small while running the algorithms
on as much as 400 processors.

Finally, we discuss the performance for the tests with the minimal number
of iterations (to illustrate the potential). We compared the measured runtimes
to runtimes of a virtual preconditioned GMRES(50) that has the cycle time
of GMRES(50) with a local preconditioner and the number of iterations of the
sequential algorithm. This models a perfect speed-up for the preconditioner. We
give the relative overhead of the preconditioners for the runtime of a cycle and for

TABLE 7. Measured runtimes and relative performance for problem 1.

measured runtimes relative performance
overlap cycle iteration | solution || cycle | iteration | solution
(z/y) || time (s) count time (s) || time | count time
0 177 | 5x50+46|10.2 1.00 2.53 2.53
2 191 |3x50+15] 6.90 1.08 141 1.52
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TABLE 8. Measured runtimes and relative performance for

problem 2.
measured runtimes relative performance
overlap cycle iteration solution || cycle | iteration | solution
(z/y) || time (s) count time (s) || time | count time
0 2.21 19 x 50 + 40 | 43.3 1.00 1.78 1.78
1 2.31 13 x 50441 | 31.8 1.05 1.24 1.30

the number of iterations. The product of these gives approximately the relative
overhead for the total solution time. This can be considered as the inverse of
the efficiency. ‘The results are given in Tables 7 and 8. For comparison we also
give the results for local preconditioning. The adapted preconditioners give a
significantly better performance. Moreover, given the fact that we run on 400
processors in parallel, we can stay quite close to the optimal performance: about
65% for problem 1 and almost 80% for problem 2.

4. Conclusions

The IBLU preconditioners described have the potential to keep the iteration
count almost constant going from one to 400 subdomains. The overhead within
one cycle is only marginal, even on a large number of processors. The a priori
choice of good parameters is an open problem, and future research in this di-
rection is necessary. However, for block relaxations see [3, 4]. The generation
of the preconditioner is straightforward and efficient; it does not introduce any
significant parallel overhead.
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