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AN OVERDETERMINED SCHWARZ ALTERNATING METHOD

VICTOR H. SUN AND WEL-PAI TANG

ABSTRACT. In this paper, & new type of coupling on the artificial boundary
layer is proposed for the classical SAM. The convergence rate is demonstrated
for this algorithm. Numerical testing has been carried out for & variety of
problems.

1. INTRODUCTION

It is well known that the rate of convergence of the Schwarz alternating method
increases with the amount of overlap, yet large overlap is not desirable. One in-
teresting problem is how to improve convergence speed without increasing overlap.
Tang proposed the generalized Schwarz Alternating method (GSAM) a few years
ago [7], which applies the Robin boundary condition, wu + (1 —w g—z, on the ar-
tificial boundaries. A similar idea was presented by P. Lions [3]. Tang’s work was
generalized recently by Tan and Borsboom [6]. It was shown in [7] that rapid con-
vergence can be achieved with the minimum overlap, if an optimal w is chosen.
The convergence rate is even faster than the classical SAM with a large overlap,
but convergence can be a sensitive function of this parameter.

The GSAM applies the Robin condition only on the artificial boundaries. In
this paper, we introduce an artificial boundary layer along the artificial boundary.
The Robin condition is imposed on the entire layer. As we will demonstrate, this
is beneficial to the convergence behavior of this approach.

In the next section, a new method, the OSAM, is introduced. The equivalent
theorem and convergence behavior for the model problem is given in Section 3, and
numerical results are shown in Section 4. Section 5 concludes the paper.

2. OVERDETERMINED SAM AND BOUNDARY LAYER RECONSTRUCTION

Consider the following boundary value problem:

(1) { MW = £ @
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FIGURE 1. Artificial Boundary Layers

where I represents a general linear second order elliptic operator, and 1 is a
bounded region in R?. For simplicity, we consider only the two overlapping sub-
domain case (see Fig. 1). The generalization to an irregular solution domain or
multi-subdomain problem is straightforward.

The rectangular solution region 2 is partitioned into two overlapping subdomains
2; and Q5. Let

Ty =093NQ, P12 =00 NQy, T1 =820, Ty = o0 N ofl,.

We introduce two artificial boundary layers £; and L3 (the shaded regions in
Fig. 1), which are next to the corresponding artificial boundaries I';; and T'3;. The
thickness of these layers depends on the grid. When a uniform grid is employed, the
corresponding thickness of the boundary layer will be the grid size h. For a general
triangular mesh, the boundary layer will be the union of all triangles for which at
least one of its edges or nodes is on the artificial boundary. The motivation for this
choice is to allow the minimum overlap needed in the new algorithm. Let '}, and
I'%,, denote the inner boundaries of the boundary layers £; and L3, respectively.

The Robin condition is imposed on the entire boundary layer. Consequently, a
new problem can be formulated as follows:

L(ul) = f’ 911 L("’Z) = .fa {13,
(2) ;

ulr, =9, uzlr, =9,
b(u1)le, = bluz)le,, b(uz)lc, = blu1)lea,

where b(u) = wu + (1 — w)%%. There are many choices for the function w. In this
paper, we investigate only a very special case:

1, {(z,y) € artificial boundary,
w= .
0, otherwise.

Problem (2) is overdetermined. In general, no solution may exist for an overde-
termined problem, but in this case, the following result is trivially true:

Lemma 2.1. If a solution of (1) ezists and is unique, then a solution for problem
(2) also ezists and is unique.
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FIGURE 2. Maximum eigenvalues for 2-D seven subdomains

minimum overlap

Actually, the solutions of (1) and (2) are identical. On the other hand, an
iterative algorithm for solving problem (2) can easily be extended from the classical
SAM.

To design a deterministic algorithm, reconstruction of the coupling on the bound-
ary layer is necessary. When the problem is discretized, the. constraint on the
artificial boundary layer affects only the grid nodes on the boundary of the layer.

We observe that the solution on the inner side of the boundary layer satisfies
both the difference operator and the derivative coupling between two solutions on
the neighboring subdomain. Therefore, a natural approach is to apply a weighted
combination of these two conditions. Namely, a linear combination of the difference
operator and the Neumann condition is used to eliminate the extra constraint. In
our numerical tests, the parameter (0 < 8 < 1) represents the weight for the
difference operator part.

3. CONVERGENGCE RESULT

Applying matrix analysis as in [7], the OSAM can be formulated as the solution
to an enhanced matrix problem A'z’ = §' of Az = b, which is the discretized form
of (1){5]. The convergence rate is then determined by the spectral radins of the
Jacobian iterative matrix. For the model problem, we have the following results.

Theorem 3.1. For the model problem, matriz A is equivalent (in the sense of [7])
to its enhanced OSAM matriz A’, for 0 <6 < 1.

Figure 2 shows the maximum eigenvalues of the Jacobi iterative matrix as a
function of the parameters. Detailed analysis can be found in {5]. It can be seen
that the OSAM shows better convergence behavior than GSAM or SAM (which
is the special case of the GSAM with w = 1). The sensitivity of the convergence
rate for the OSAM to its parameter is much reduced. Moreover, OSAM with a
minimum overlap is still much better than SAM with a half overlap.

4. NUMERICAL TESTS

Results for several test problems in the 2-D and 3-D cases are presented in
this section. The differential equations are discretized by the standard central
difference scheme. For each 2-D test problem, the solution domain is decomposed
into a different number of subdomains. In all the cases, each subdomain contains
a 20 x 20 grid and minimum overlap is considered. Domain decomposition is used
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as a preconditioner and Bi-CGSTAB is employed for the acceleration scheme. The
convergence test is to require a residual reduction of 10°.

In the tables of results, “SAM” represents the result for the traditional Schwarz
alternating method. The “¥” and “#*” mean that the OSAM does not converge
within 100 and 200 iterations, respectively, and the iteration is stopped. “Iter”
and “SubD” represent the number of linear iterations needed to reach the precision .
and the total number of subdomains, respectively. We also define the improvement

factor to be 7 = -‘SW. The notation 7, represents the best improvement
factor of the results.

4.1. Stress in helical spring. The first problem tested is [2]

Beet By + B =, 2N,
where @ = (—.5,.5) x (—1,1), and & = 0 on the boundary. The problem has an
exact solution [4]: & = (1 — y?)(1 — 42%)(5 — »*)(0.0004838y -+ 0.0010185).

The numerical results are shown in Table la. It can be seen that the OSAM
performs better than the SAM with only one exception of 8 = 0.1. For the optimal
case, § = 0.3, OSAM takes only half the number of iterations of SAM.

4.2, Discontinuous coefficient problem. In this test, the following equation
was considered

(Kotz)s + (Kyuy)y + v + vy = sin(rzy),
where » = 0 on the boundary of unit square, and

1, [0,.5] x [0,.5] U [.5, 1] x [.5,1],
K, =K, =< 103 [.5, 1] x [0, .5],
1073, [0,.5] x [.5,1].
Stress in helical spring Discontinuous coef ficients
SubD || 8x12 || 6x8 || 3x4 SubD || 10x10 || 8x8 || 4x4
é Iter Iter || Iter é Iter Iter || Iter
0.1 68 42 18 0.1 * * *
0.2 17 12 7 0.2 87 63 *
0.3 14 11 6 0.3 16 15 10
0.4 16 13 6 0.4 16 12 8
0.5 17 14 6 0.5 13 11 7
0.6 17 13 6 0.6 16 11 7
0.7 18 14 7 0.7 17 12 7
0.8 20 15 7 0.8 19 11 9
0.9 20 15 7 0.9 16 11 9
1.0 19 14 9 1.0 17 12 10
SAM || 29 20 10 SAM 31 22 13
T 0.517 || 0.450 || 0.400 7 0.548 || 0.500 || 0.462
a b

TABLE 1.



AN OVERDETERMINED SCHWARZ ALTERNATING METHOD 353

Resuits for indefinite problem

SubD 10x10 8x8 4x4
6 Tter Tter Iter
¢=-20 | ¢=-T0 [j ¢=-20 | ¢=-T0 [ ¢=-20 | ¢=-T0
0.1 * sk * sk 55 Kk
0.2 * e * *% 29 173
0.3 * P * 194 18 76
0.4 21 49 18 38 10 29
0.5 20 58 17 31 9 26
0.6 21 46 18 38 9 27
0.7 23 43 18 37 9 21
0.8 22 49 18 33 9 19
0.9 26 60 19 48 10 19
1.0 25 82 18 41 11 19
SAM 37 144 30 85 14 42
™ 0.459 | 0.713 || 0.433 | 0.665 |} 0.357 | 0.548
TABLE 2.

Harmonic weighting is used at points of discontinuity in K, K,. The results
are shown in Table 1b. It can be seen that the improvement factor in this test is
larger than that in the previous case. From the result of this test, it appears that
OSAM shows great potential for solving difficult problems. This will be further
demonstrated by the following test.

4.3. Variable-coefficient, indefinite problem. The problem tested is

1 1
Lu = -1+ 3 sin(507z))ug]. — [(1+ 3 sin(507z) sin(507y))uyly
(3) + 20sin(107z) cos(10my)u, — 20 cos(107z) sin(107y)uy + cu

where u = exp(xy) sin(rz) sin(ry) is defined on a unit square [1], for ¢ < 0. In this
work, the cases for ¢ = —20,—70 were tested. We will see that the second case
requires much more work than the first one for the same decomposition form.

The numerical results are reported in Table 2. From these results, the difficulty
of this problem is obvious as compared with the corresponding iteration count of
previous tests.

For ¢ = —20, the problem is more weakly indefinite than for ¢ = —70 with the

same grid size. The results show that the work for ¢ = —20 is only a little more
than the corresponding situations in the last two tests. The improvement factor
varies from one-third to one-half. However, when ¢ = —70, OSAM demonstrates its

superiority over SAM. The improvement factors for all three decomposition cases
are greater than one-half. This test further demonstrates that OSAM performs
better for difficult problems.

4.4. Helmholtz equation. Here we present the results for the Helmholtz equa-
tion —Au+u = f in 3-D case. The true solution is u = exp(zy)sin(#z) in the
cube. The solution domain is decomposed into 8 sirips in z-direction. The total
number of unknowns is 733.
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Results for Helmholtz equation
 101/02]03;04(05({060.7)|0.8]0.9}1.0|5SAM
Iter | 8 [ 7 | 6 | 7| 6 |5 |6 6|6 16 10

TABLE 3.

The numerical results are presented in Table 3. In the best case, OSAM took
only one half as many iterations as did SAM.

5. CoNCLUSION

In this paper, a new extension of the classical SAM — OSAM ~ is proposed. In
this new approach, a stronger coupling is imposed on the artificial boundary layers.
The superior convergence behavior is demonstrated for a variety of test problems.
In particular, the weighted parameter 8 does not have the sensitivity problem from
which the GSAM suffers. So far, our testing is restricted to a single level approach.
A multilevel preconditioner approach is the natural future extension of this work.
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