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Domain Decomposition For Linear
And Nonlinear Elliptic Problems Via
Function Or Space Decomposition

XUE-CHENG TAI

ABSTRACT. In this article, we use a function decomposition method and
a space decomposition method of [5] to derive some parallel overlapping
and nonoverlapping domain decomposition methods for self-adjoint linear
and nonlinear elliptic problems. The function decomposition method and
the space decomposition method use different starting points in doing the
domain decomposition.

1. The function decomposition and space decomposition methods

In [5], function decomposition and space decomposition methods were pro-
posed for a general convex programming problem. Here, we shall briefly show
how we can use the methods for overlapping and nonoverlapping domain decom-
position methods for linear and nonlinear elliptic problems.

It was shown, see [5], that by suitably decomposing the energy function for
an elliptic problem, we can derive the classical Alternating Direction methods,
see [1, 4]. By using different function decompositions, we can also derive some
nonoverlapping domain decomposition methods for these problems. This shows
that the Alternating Direction methods and the domain decomposition methods
are just different ways of decomposing a problem, or in other words that we can
use the splitting methods to get domain decomposition methods for some linear
and nonlinear elliptic and parabolic problems.

The concept of space decomposition was first introduced in a review paper
[8]. There many multigrid and domain decomposition methods are presented
and analyzed. It is known that the overlapping domain decomposition methods,
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the substructuring methods, [2], and the multilevel methods, [6, 7], give some

nice ways to decompose the finite element spaces. In the published papers, their

convergence behaviour has been carefully analyzed for linear problems. By using

the space decomposition approach of [5], we try to show that if these methods can

be used for linear problems, they can also be used for some nonlinear problems.
First, let us recall the results of [5]. We consider minimization

(1) 11)%1}1{1F(11) , KcVv.

In case of function decomposition, we need to assume:

(F1). The space V is a Hilbert space and there exist Hilbert spaces V;, i =
1,2,---,m, such that V =nN",V;.

(F2). The function F' : V +— R is convex, lower-semicontinuous in V and there
exist convex, lower—semicontinuous functions F; : V; — R in Vi, i =
1,2,---,m, such that F(v) =", F;(v), YwecV.

(F3). The subset K is closed and convex in the norm of V. There exist convex
subsets K; C V;, ¢ =1,2,--- ,m, such that K = Nz, K.

(F4). There exists a Hilbert space H such that V C V; C H,i=1,2,---,m.

In case of space decomposition, we need to assume:

(81). The space V is a reflexive Banach and there exist reflexive Banach spaces
Viei=1,2,--- ym,such V=V + Vo4 4+ V,.

(82). The subset K is closed and convex in the norm of V. There exist closed
and convex subsets K; of V; such that K = K) + Ky + -+« + K,,.

(S3). The function F(v) is convex, lower-semicontinuous in the norm of V and
satisfies limy,), — 400 % = +o0.

(84). There exist constants Cy, C; such that Col| >0, vz“f/ <3 vl v, €
Vi, i=1,2,--- ,m, and

YveV, Ju; €V;,i=1,2,--- ,m, such that

m m
Zvi = v and Z lwelly < Cullvlf% .
i=1 =1

Under (F1)~(F4), we find that the minimization (1) is equivalent to

m

(2) min Fi(v;) .

(v1,v2,vm )€, K i1

VIV = Uy,

This is a minimization of a separable structure under the extra constraint v; =
U3 =+ = Uy, . In order to use a parallel method, we need to introduce a new
variable v and realize the above constraint by enforcing v; = v,1=1,2,---,m.
We will use augmented Lagrangian methods to deal with it. We define L, on
Hx[[™, Vix H" by

Le(v,v;, ) = > Filws) + - D (v —v)g + 5 Dl =l -
FESS =1 i=1
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We will seek a saddle point for L, over H x [T, K; x H™. We say (u,u;, Ai) is
a saddle point if
Lr(u7 uuﬂz) < Lr(u; uzv)\z) < L’r(”:'”i; /\’i)a Yo e H: v; € K’I,)l‘l'l €H.
It is easy to prove that, if (u,u;, \;) is a saddle point for L,, then u is a minimizer
for (1). Under (F1)—(F4), we get the following parallel algorithm for (1):
ALGORITHM 1.
Step 1. Choose initial values u) € K; and X € H (i = 1,2,---m), and positive
numbers r > 0, and p € (0, 1—+2‘—/—5)r
Step 2. Forn > 1, set

1 m 1 m
n __ n—1 n—1
yt = — E ulT A+ — E AT
m “ Tm “
i=1 =1

Step 3. Find vl € K;, i1 =1,2,---,m in parallel such that

1 r
F ™)+~ u? — [ — u™|2
(3) (uz)+m( % > Uy )H+2m“uz U ”H

1, T
<Fi(vi) + —(X Lu)m + 5= llvi = u|y, Vv ek, .
Step 4. Update the multipliers and gd to step 2: AP = AT 4 p(uf —u") .

The following theorem (see [5]) shows the convergence:

THEOREM 1. Suppose L, has a saddle point over H x [];-, K; x H™. There
exists a unique solution ul such that (3) is satisfied. If conditions (F1)-(F4)
are valid, and F; is Gateauz differentiable with the inner product of H, then we

have estimate: :

N om Com  Cur
STy no__ < Ly T2 N>0.
} > (F/(ul) - F (u),uf —u)g < 2 T om’ VN >

i=1 i=1
The constants Co and Cy depend only on the initial functions )\?, 1 and the
solution u of (1).
Next, we discuss the space decomposition. Under conditions (81)-(S2), we
can see that, if (u1,u2,- -+ ,u,) IS a minimizer for

(4) Floi+ve---+wp),

then "7, u; is a minimizer for (1). We use Jacobi method to find a solution for
the minimization (4):

min
(v1.02,vm)El]IZ, K

ALGORITHM 2.
Step 1. Choose u? € K; and relazation parameters o; > 0 such that 3 .-, a; < 1.

Step 2. Forn > 1, find u?+% € K; in parallel for i =1,2,--- ,m such that

m m .
F(S @+uf™ ) <F( Y wf+uw), Vuck.
k=1.k7i k=1 ki

i
Step 3. Set u;”“l as: u?ﬂ =ul + ai(u?+'2 —ul"), and go to step 2.



358 XUE-CHENG TAI

For this algorithm, we have the following convergence result (see [5]):

THEOREM 2. Under conditions (81)-(54), we assume each K; is a bounded
subset in V or K; = V;, function F is Gateauz differentiable and locally uniformly
conves over bounded subsets in V and IV is uniformly continuous over bounded
subsets in V, then we have for Algorithm 2 the convergence

m
umtl = E ul ™' — u strongly in V as n — oo .

=1

As was observed in [8], the Jacobi method may not converge for general space
decomposition problems. Here, by using a suitable under relaxation, we get
the sufficient condition of convergence even for general minimization problems.
In case that F’ is Lipschitz continuous and coercive, an error estimate in a
weak form was proved in [5], which shows the dependence of the convergence on
constant C1/Cp.

2. Applications to domain decomposition

Let us consider the model problem:

. 1o,
® veWe (@) (/a (Elwl fv) dx) '

We assume s > 2. If s = 2, it represents a typical self-adjoint linear elliptic
equation; if s # 2, it is a nonlinear elliptic equation. We will restrict our consid-
eration only to the discrete case. As in Glowinski and Marrocco [3], if we replace
the Sobolev space W&’S by a finite element space and carry out the minimization
of (5) over it, the finite element solution will converge to the minimizer of (5).

Assume ) has been partitioned into finite elements 7;, and the union of the
finite elements form a discrete domain €);,. Let us define Sy, as the nonconforming
finite element space and Vj, as the conforming finite element space of kP order
polynomials, i.e.

Sy = {’Uhl Up € Pk(e),Ve € Ty, vp =0 on 6Qh} y
Vi ={vr| vy € C%Q), vy € Pyle),Ve € Tn,vn =00n 8} .

We define the inner product of Sy, and Vi as (4,v)s, = X .cr, (4 V) m1(c)- The
discrete version of (5) is:

(6) vlhnei{}h eezﬂ/e (%[V?}hls - f'vh) dz .

We assume ();, has been partitioned into nonoverlapping subdomains {}; and
(), and each subdomain is the union of some elements of 7;,. This does not
limit us to two parallel processors, because each {}; can again contain many
disjoint subdomains. Here we will consider only the case that each €); is a single
connected subdomain. We will report elsewhere on the case that each €2; contains
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many disjoint subdomains. In order to use our algorithm, let us take m = 2,
Vi=Va=V =8, H=5,, K=V, and

1
Fyi(vn) = Z / (;[V'uhls - f’Uh) dz,Yvp, € Sp,i=1,2.

ec, N €

In order to satisfy (¥3), we extend each subdomain §; to a larger subdomain
0O;, i = 1,2, and each O; is the union of some elements of 7;,. The subdomains
(); are nonoverlapping subdomains, while the subdomains O; will overlap with
each other. We define K; = {vp| vn € Pi,Ve € Tp,vp € C°(0;)} .1 O; and Oy
overlap suitably, we can have K = K N K, . Thus, the assumptions (F1)-(F4)
are all satisfied and Fy, ; satisfies [3]:

(FY,i(on1) — B s(0n2),0m1 — 0n2)sy > / IV (omr — vn2)|odyi = 1,2,
Q;

Therefore, we get the following convergent algorithm for (6) from Algorithm 1.

ALGORITHM 3.
Step 1. Choose initial values and constants r, p. Forn > 1, set
1, _ 1 _ _
up = 5(“2,11 + u2,21) + 5;()‘2,11 + )‘2,21) .
Step 2. Solve uj, ; € H'(O1),uf , € H'(Os) in parallel from:

_ n 1 _
(IVUZ,ﬂs 2Vuh,1,Vvh)L2(Ql)+§ Z ()‘Z.llavh)Hl(e)

ecT;, N0y
r n k3
(7) *t3 Z (uhy 1 — U, VR (e) = (FyvR)L2(y), YR € Vi,
ecT, N0y
- n 1 n-—
(IVuR o1° 72 Vug 5, Vo) 2¢y) + 3 > Onsh e
ecTLNOy
T n n
(8) +3 Z (up o — up,vh)H1(e) = (f,VR)12(02), YVR € Vi .
e€TnNO2
We obtain the value of uft, in N\O1, and the value of uf, 5, in O,
through:
1 ipot
up = up — ;Azgl in Q\Oy, up o = uj, — ;)\2_21 in Q\Oz .
Homogeneous Dirichlet boundary conditions should be enforced on 8 for
(7) and (8).
Step 3. Update the multipliers as: A} ; = AZ;I +p(up, ; — ul), inQi=1.2, and
go to step 2.

In [5] several other algorithm were also obtained for (5) and other linear self-
adjoint elliptic problems.

Next, we use overlapping domain decomposition for (6). As before, we as-
sume we have partitioned {2 into finite elements. We then decompose Qy, into
overlapping subdomains and each subdomain is the union of some elements of
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T;,. We assume that the subdomains can be marked by m colors, so that the
subdomains with the same color do not intersect with each other. We denote
the union of the subdomains with the ith color as ;. Let us take

Vai = {vn| wne€ C*(Q), v, € Py,Ve € T, NQy, v, = 0in Qp\; and on o} -

If the subdomains overlaps suitably, we will have V}, = Z:’;l Vh,i, and the
constants Cp, C; can be explicitly estimated, see [2, 9]. For simplicity, we define
for Algorithm 2:

i 1 1
=Zu?, wPtt = Z uptt 4 +2 =u"—u?+u?+2,‘v’i,n.
i k=1,kAi
We get from Algorithm 2 the following overlapping algorithm for (6):

ALGORITHM 4.

Step 1. Choose u}, ; € Vi; and constants a; > 0 such that S0 <L
Step 2. For n > 1, solve in parallel in each subdomain Q; the following problem.:

(l n+1|5 ZV’ijl,V’Uh)Lz(Qi) = (f, 'Uh,)L2(Qi)a V’Uh S Vh,i .
m
“+1 =0 on 0Q; N0, , 'wZJfl up = up 5, on 02\, .
k=1,ki

Step 3. Set un+1 as: uZ'zH =up,; + uz(w"Jrl —u}) in Qi =1,2,---m, and go
to the nezt iteration.
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