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ABsTrRACT. This paper deals with finite element approximations which are
defined independently on each subdomain and which do not match at the
interfaces. Weak matching conditions then impose that the solution on
two neighboring subdomains share the same L2 projection on the mortar
space which is defined on their common interface. For elliptic problems, we
will prove that such discretization strategies lead to optimal approximation
errors.

On the numerical side, the resulting discrete problem can be reduced to
a problem set on the interface and associated to a generalized Schur com-
plement matrix. This interface problem can then be solved by a precon-
ditioned Conjugate Gradient method, using a Neumann-Neumann precon-
ditioner with coarse grid correction. This technique, illustrated on several
numerical examples, is proved to be optimal in such cases.

1. Introduction

Variational methods for decomposing and solving elliptic problems by domain
decomposition techniques are well established. Most applications use discretiza-
tion grids which are defined globally over the whole domain and then split into
subdomains. In mechanics, this results into an overall conforming approximation
of the velocity field. However, it might be more convenient and efficient to use
approximations which are defined independently on each subdomain and which
do not match at the interfaces. This allows the user to make local and adap-
tive change of designs, models, approximation strategies, or grids on one domain
without modifying the other ones, provided that the user has found an adequate

1991 Mathematics Subject Classification. Primary 65F30; Secondary 65F10.
The paper is in its final version and will not be submitted for publication elsewhere.

61



62 P. LE TALLEC, T. SASSI, AND M. VIDRASCU

way of imposing the weak continuity of both the fluxes and the velocities across
such nonconforming interfaces.

In this paper, we will solve this problem by introducing a three-dimensional
variant of the so-called mortar spaces. On the mathematical side, this technique
imposes that the solution on two neighboring subdomains share the same L?
projection on the mortar space which is defined on their common interface. For
elliptic problems, we will prove that such discretization strategies lead to optimal
approximation errors.

On the practical side, the resulting discrete problem can be reduced to a
problem set on the interface and associated to a generalized Schur complement
matrix. This interface problem can then be solved by a preconditioned Conju-
gate Gradient method, using for example a Neumann-Neumann preconditioner.
This algorithm is very flexible and can be used both in a conforming and in a
nonconforming framework. In both cases, we will add an unstructured coarse
grid solver when using decompositions with a large number of subdomains, and
prove the optimality of the resulting preconditioner.

2. Construction of the discrete problem

Nonoverlapping domain decomposition algorithms compute interface values
which usually are the values of the unknowns on interface nodes shared by neigh-
boring subdomains. But, it might be more efficient to consider interface nodes
which do not match across the interfaces (Figure 1) [13], [8], [7], [9].

FIGURE 1. Matching and Nonmatching Grids

In such situations, the problem is then to impose global continuity of the
unknowns. For this purpose, let us define the different subdomains €; of Q
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either by direct juxtaposition of existing local meshes or by automatic partition-
ing of an existing global mesh. Such an automatic partitioning can be obtained
for example by using spectral dissection techniques [18], [11] or K-means tech-
niques (dynamic clusters) as classically used in data analysis. On all resulting
subdomains, let us then introduce independent finite element spaces p{€2;).
Functions of these local finite element spaces are supposed to belong to 1(Qz)
and to vanish on the local Dirichlet boundary 8Qp N 9Q;. To match all these
spaces together, we finally introduce finite dimensional mortar spaces ;5 de-
fined on each interface Fi;, ¢ < j, and weak traces T'ry;, and T'rj;, defined by
L? projection :

(2.1) / (Trijnvi —vi)tn = 0, Vup € 450, Yv; € (%), Trijnvi €  ijn,

7

(2.2) (Trjmv; —vj)pn =0, Yup € 4n,Yv; € w(25),Trjinv; €  ijn-
Fij

Then, the space of finite element approximations of u over 2 can be defined by

(2.3) h(Q) = {('Uz'h)i € H h(Qi),T'rijhvih = T7r5:nV5n onFij,Vz' < J}
i

On this space, we wish to solve the second order elliptic variational problem
Find up € #(£2) solution of
(2.4) a(un,vp) = Z/Q a(Vug) : Vup, = L(vg),Von, € (D).
Above, 0(Vuy) denotes a given symmetric elliptic linear function of Vuy,. For
example, the classical case of isotropic linear elasticity corresponds to the choice
o(Vur) = ATr(Vup)Id + p(Vuy + Viup)

which relates the deformation tensor (Vuy + VZup)/2 to the stress tensor o.
Moreover, the right-hand side L(vy) is usually of the form

L(vn) =/Qf-vh.

By introducing the Lagrange multipliers of the interface continuity constraints
Trijnvin = TTj:nv;n, this global problem takes the mixed form :

Find (u;p) € H n(€), and (A;;) € H s solution of

i<j

1
/ o(Vuir) : Vo + Z/ AijVin — Z/ Ajivin = L(vin),
Q; i<g Y Fig i>g ¥ Fit

Yuin € h(ﬂi),\?’i,
/ (win — win)pn = 0,Yup €  45n, Vi < 4.
F

-

i
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In algebraic form, we thus recover the classical subdomain by subdomain writing

AZU,,, -+ ZTrg;hAij — ZT’/’;‘thAﬁ = Fi,V’l:,
i<j >3

T’l"i_,,'hUi = ﬁij, Vj 75 1.

This sequence of local problems can now be solved by any classical substruc-
turing algorithms. Indeed, after elimination of U; and A;;, and with respect to
the interface unknowns U = (U;;)i<; = (T'rijaU)i<;, the above problem takes
the standard form:

- A TrT, O\ . -
T i ) . =
(2.5) Ei ' B ( Tron ) RO=F

Compared to the case of matching grids, the nonmatching case finally leads
to the same algorithms with three major changes :
e the pointwise traces are replaced on each face F;; by local L? averaged
traces T'rijn;
e the pointwise interface restriction R; is replaced by a global restriction
operator R; which maps the global trace U into the local right-hand side

((—2,),\##;

o the space of global traces U is now defined face by face in the (smaller)
product space [, ; ijh- Edges and vertices do not play any role in this
definition. In fact, the definition of the trace on any geometric vertex or
edge will no longer be unique and will depend of the particular face Fi;
on which it is taken.

REMARK 2.1. At the limit where the local spaces p(€;) become dense in
H(SY), a straightforward integration by parts shows that the solution of the
proposed discrete problem satisfies the interface flur continuity requirement:

For each interface Fj;, there exisis a traction force Aiy; € ;1 such that

/ ' vi(o(u)n — Ay;) =0,V € (),

ij

/F” vi(o(uy)n— i) =0,Yv; €  n(SY).

We thus observe that the multiplier unknown Ay plays the role of a common
traction force or generalized normal derivative.
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3. Error analysis

The above framework reduces and simplifies the interface algebraic problem,
improves the flexibility of the numerical method, but changes the discrete prob-
lem. In particular, the proposed discrete solution is not pointwise continuous
across the different interfaces. Nevertheless, we prove in this section that this
new approximate solution still converges optimally in the sense that

llw = wnllar < CB*llufl grss -

Here k is the order of the finite elements which are used, and u denotes the
continuous solution of the original elliptic problem set on the space

(9) = {v e Hy(Q),v=00n00p}.

Moreover, the norm |Ju — upl| g is a sum of local H! subdomain norms :

1/2
lu—unlla = (Z fluw — Uhllqu(ni)) :

To prove such an optimal convergence result, we need two assumptions on the
mortar spaces Ghe

AsSSUMPTION 3.1. The space i;n s a consistent approzimation of the dual
of H%(Fm) in the sense that

inf  [lu— Nijllmrraeeyy < CH¥ Il -z (r,y-

A€ ijn

In practice, it is sufficient that ;5 be a good approximation of H¥+1(F;;)
in 2. This means that functions of i;» may be discontinuous but must be
allowed to take non zero values next to the boundary 8F;;.

ASSUMPTION 3.2. On each interface Fi;, one neighboring subdomain k (k =
i or k = j) has a regular triangulation and satisfies

Je Aijon
inf sup Gt

M€ wnhuperr w@onHi(Fy) Pl vl ~

This assumption means that ;;, must be small compared to the space of
traces of (). We refer to Maday [14] for examples of finite element spaces
satisfying this assumption. From the technical point of view, the above assump-
tion is written in the L? norm which makes its verification much easier ([13]).

With these assumptions, we can now prove :
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LEMMA 3.1. Under Assumption 3.1, we have

sup 1A 0n) — Lwn)l _ i > _llonlmsaragmy,) |
wie w@  lonlle i

and under Assumption 3.2 , we have

inf |lu— vnllzr < Ch¥|[ull gass (g)-
vRE (D)

Proof. By integration by parts, and since u is by construction the solution
of the partial differential equation

div (o) + f =00n,
we first get
R = a(u,ws)— L(wp)

= Z /{dwa+f}’wzh+2/ (o.1).(win, — wjn)

i<j
-y / (0:1)-(win, — wyn), Vo, € 4(R).
i<g F

Since wy, belongs to  ,(£2), we have Trijpwin = Trinwjn, and thus we can
rewrite the above inequality as

R =Y / (o). ((win = w3n) — (Trsjnwin — Trynw;n)

i<j

i

Z/ (U n— [.l,h) ((wzh - wgh) (T'rz]hwzh - TT]zthh));

i<j

for any function yy, in ;5. Hence, we deduce

Rl < Z inf Ho'-n‘Nh”H—l/z(F,»j)”(wih—wjh)“Hl/z(Fij),

i<j BRE  ijhn

IA

Z”f’-nnﬂk—lfzmj) lwn || -

For the second estimate, we construct the function vy, by
(Uh)lﬂi =T;u— Z Trto T'r';; o (Trijhl'iu - Trj,-thu) .
ijeJ(E)
Above, 7; is the usual interpolation operator,

Trin: in—Tr n(Q) N HE(Fy)

is a contmuous inverse of T'ry;p, which is well defined in L2 from Assumption
3.2, and Tr™* is a continuous inverse of the usual trace operator. Moreover, the
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set J(¢) on which the summation is carried is defined as the set of all interfaces
F; for which ,(€);) satisfies Assumption 3.2.
On each face ij € J(i), we first have by construction

Tnjh(vh) = T’I'ijhl-iu et (Trithiu - TT‘jthju)
= Trﬁhl'ju = Trjq:h/vh
which guarantees that the above function vy, does belong to ().

On the other hand, from the inverse Sobolev inequality, the contracting prop-
erties of the L? projection T'rijn and from standard results on interpolation, we
get :

llu — wnlfn o < Cllu — Tiulln g,
+ E Tr=|1? “T’"wh o (TrijnZiw — TrjinZju) ”Hl/z(F,J)

ijEJ(3)

< C“U - Izu”%1(nz) + Z ”Tr’l.]h [¢] (T?"”hI’M T”'J«,,hZ u)”LZ(F,])
’L]EJ('P.)

< Cllu—1I; u”m(n yt Z ———||(Iu Z; u)“L2(F”)
ZJEJ(z)

< Ch2 ”’LL“Hk+1(Q ot Z h2k+1 + h2k+1)||u”11k+1/2(pm)
1.767(1)

2k+1

< ChPFlullfnriay + D (h?k““”m“(nz) + nu”HHl(Q )>

ijed(i)

which yields the desired estimate.
We are now ready to prove our final convergence result.

THEOREM 3.1. For any continuous uniformly elliptic second order operator
a(.,.), and under the assumptions 3.1 and 3.2, the error between ithe noncorn-
forming discrete solution up, and the exact solution u is bounded by

”u _ Uh“H < CH* ”'U’HZH"‘*‘I(Q) -+ (Z ”0’.7&"?{&_1/2(}7‘_:’,))1/2
i<j

Proof. From a classical lemma of Strang and Fix [17], any nonconforming
finite element approximation of the solution of a continuous uniformly elliptic
second order problem satisfies

Yl wnlfiay € X = vl + sup la(u, 7&2{1} :(wh)i'
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The conclusion follows then by a direct application of the above lemma. Ob-
serve finally that for smooth coefficients, we have

ou
||U~"||Hk—1/2(F,-j) = | Z al%”H’c—lﬂ(Fij)
14

IA

Cllulfresrar,y < Cllulay-

4. Neumann-Neumann algorithm

4.1. Basic algorithm. Using either matching or nonmatching grids yields
the same discrete interface problem :

AT A; T”"zT'h T —
(4.1) Z R! ( Tron K ) RU=F.
The presence of nonmatching grids simply replaces the pointwise operator T'r;;
by the global projection T'ry.

In any case, this problem can be solved by the usual Neumann-Neumann
preconditioned conjugate gradient algorithm which acts on any given weak trace
[_] = (ﬁij)i<j = (T’T'ijhU)i<j as follows :

e On each subdomain, solve in parallel the local mixed problem

A; TrT U, 0
* ijh t = _
(4.2) ( Trijn 0 ) ( A% ) ( Uij )

o On each interface Fj;,7 < j, compute the residual jump of the general-
ized local normal derivatives

A,;j = A:J +A‘Z] == ((S-L + Sj)U)lFij = (Sﬁ)lFij .

e Project this residual onto the original space by solving in parallel the
local Neumann problems

Pi
Az‘l’z = — TT;'—I‘;-hAij.

pi+ pj

e Update U by the preconditioned residual

FO)r, = piiipjT"’ijh\I'i + piij jT'rjih\I’j.

The above algorithimn is very flexible and has good localization properties. The
coefficient p; is a local average value of the coefficients of the elliptic operator
o(Vu) and cancels the effects of large jumps of coefficients across the different
interfaces. The stiffness matrix A; is the usual finite element matrix of the local
space x(f};). For matching grids, the interface matrix T'r;;, is a restriction
matrix with a unique nonzero element per row. For nonmatching grids, the
element kl of this matrix is given by the L? interface scalar product of the
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k finite element shape function ¢z of (£;) and of the [ finite element shape
function 1; of the mortar space ;; :

(Trijn)a = /F e

4.2. Coarse Grid Solver. In the original algorithm, the Neumann subprob-
lems are defined to within a rigid body motion and the condition number of the
associated preconditioned operator grows with the inverse of the diameters H
of the subdomains (cond(M~'S) = C/H?). J. Mandel [15] proposed comput-
ing these arbitrary rigid body motions in order to optimize the quality of the
preconditioner. For this purpose, we first build a small space Z; on each subdo-
main. This space must contain the kernel of A; (the rigid body motions) and any
other local function whose energy scales badly with the size of the subdomain.
The extended (balanced) Neumann-Neumann preconditioner then adds to the
original local preconditioner ¥; the elements z; of Z; minimizing

I Trian (¥ + 20) o2 Trian(Ws + 2) = S Al

This optimisation problem in z; is a coarse problem with very few unknowns
per subdomain (6 for three-dimensional linear elasticity). It can be written
for all type of partitions and operators. The resulting algorithm amounts to
projecting the interface problem onto the orthogonal of the coarse space H Z;,
which cancels the bad influence of the elements of [T Z; on the preconditioner.
Its convergence now becomes independent of the number of subdomains or of
the coefficient discontinuities :

THEOREM 4.1. For either matching or nonmatching grids, the condition num-
ber of the above balanced Neumann-Neumann algorithm is bounded by

cond(M~18) < C (1 +log(H/h))*.

The constant C above is independent of the number of subdomains, independent
of the averaged coefficients p;, but does depend on the aspect ratio of the different
subdomains. In case of nonmatching grids, we have to assume that the weak trace
has a continuous inverse in the following sense :

inf up 25 I, ison
s z
(/\ij)EHj ih o €Tr  R(Sh) (ZJ nAij“L?(Fij))ﬁvhﬂﬁ(ani)

Proof. For two subdomains, we have formally
M8 = (S 4 851)(S1 + 82) = 21 + STz + 5515
Similarly in the general case, we can prove (Mandel (15], Le Tallec [12])
< 8;-EL-U;, —EL-U; >

PP
- tpitp; I pitps
cond(M18)=C sup Pitld
( ) U;€V;/2; < 8;U;,U; >
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The term ﬁ%s,- U; is bounded in two steps:
k3 ] N - .
i) interface mirror. Viewed from €;, the function ;—i%lp—jUj has a singularity at
the corner and thus, it is only bounded by [10] :

j 172
P:ﬂ”LUj”HI/?(aQi) <C(+ IOg(H/h))Pj/ ||Uj||H1/2(anj)§
pi+p;
ii) weak harmonic extension. Introducing as in Lemma 2 the bounded extension
Tr;,"' defined on Q; by

Try'=Tr %0 (PZ- - Tr;i(H(PZ- = I)i5, )) ,
k
we can easily derive the upper bound

< 8U;,U; >< Pi[|T7‘171||2”Uz'l[%11/2(rj)-

Here, P, denotes the L? projection on the trace of #{€2;) on 8Q;. The norm
of T'ry; ! is independent of the subdomain diameter H because we work on a
quotient space V;/Z; [14], [12]. On the other hand, it depends strongly on the
aspect ratio of the subdomain ;.

5. Numerical Results

5.1. Matching grids. The following tests aim at comparing the original
Neumann-Neumann algorithm and the new global version with coarse grid solver.
The first example considers a three-dimensional cantilever beam. The domain
was partitioned successively in 4, 8, 32, and 128 identical subdomains. Both
slices and boxes were treated in the 4 domain case. The table below displays
the characteristics of the partition (local number of elements NE and of degrees
of freedom NTDL, number of words used for matrix storage LMUA, size of the
coarse grid problem LRIGI, aspect ratio ASP) and the number of iterations
which were required to obtain a residual below 10~6. Two numbers are given,
one without coarse solver and one with coarse grid solver (given in parenthesis).

Nber of subdomains | NE | NTDL | LMUA | LRIGI | ASP | NITER

4= 1*1*4 (slices) [[512] 8019 [6712830] 18 | 0.8 | 23(5)
4=2*2*1 (boxes) | 512| 8331 |3970029| 12 | 0.1 | 34(8)

8 = 2*%2%2 256 | 4347 | 1914 113 36 0.2 | 62(10)
32 = 2*2*8 64 | 1275 | 295 571 168 0.8 | 157(13)
128 = 4%4*g 16 423 39 665 672 0.4 | 791(30)

FIGURE 2. Description of the different partitions
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The second example describes a three-dimensional corplex elastic structure,
made of aluminium, fixed on three lateral bolts, and twisted through an im-
posed rotation of its internal axis. The finite element mesh and final deformed
shape is depicted on Figure 3. It contains 46, 133 first order P1 tetrahedral finite
elements, 31,143 degrees of freedom, among which 4, 248 lie on subdomain in-
terfaces. This mesh was automatically partitioned into 24 subdomains, and the
calculation was performed using 1 or 24 processors of a KSR-1 parallel computer.

FIGURE 3. Finite Element mesh of the structure

The final solution was obtained after 116 iterations of the Neumann-Neumann
algorithm without coarse grid solver or after 37 iterations of the Neumann-
Neumann algorithm with coarse grid solver. On one processor, the calculation
and assembly of the local stiffness matrices took 224 s, their factorisation 224 s,
the construction of the interface data structure 3 s, the conjugate gradient ini-
tialisation 12.62 s, the local subdomain solves 1,322 s, and the interface scalar
products 47.15 s. After parallelisation of the subdomain solves on 24 proces-
sors, the timings for initialisation, local solves and interface scalar products were
of 3.75 s, 58.24 s and 54.97 s, respectively. All these figures show the nice
parallel properties of the Neurnann-Neumann algorithm even for complex three-
dimensional structures.

5.2. Nonmatching Grids without coarse grid solver. The domain con-
sidered is a beam of section 0.5m x 0.2m and length 1m or 2m. The beam is
made of a quasi-incompressible material with E = 10*'MPa (Young modulus)
and v = 0.49 (Poisson coefficient). As our main interest lies in the numerical
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solver, and not too much in the accuracy of the discretised problem, the beam is
simply partitioned into first order tetrahedral finite elements. The beam has been
sliced either along its leading dimension (nocross) or following a two-dimensional
pattern, with edges and cross-points (cross)(see Figure 5). We show in the next
table the effect of the number of subdomains p and of the mesh step h on the
convergence rate of the Neumann preconditioned conjugate gradient algorithm
(NPGQC). The number of iterations does not appear to be very sensitive to the
nonmatching character of the grid.

Number of subdomains iter | dofinQ |dofinT
and step size

p =2 h = h; {matching, nocross) 20 9180 270
p = 4 h = hy (matching, nocross) 39 9720 810
p = 4 h = hy (nonmatching, nocross) 50 8430 765
p =8 h = h; (matching, nocross) 127 | 10800 2160
p =28 h = h; (nonmatching, nocross) || 107 9480 1785
p =4 h = hy (matching, nocross) 67 2400 360
p =4 h = hy (nonmatching, nocross) 76 1800 225
p =4 h = hy/2 (matching, nocross) 66 14580 1215
p =4 h = hy/2 (nonmatching, nocross) || 88 10629 1080
p =4 h = hy (nonmatching, cross) 41 2145 330
p =4 h = hy/2 (nonmatching, cross) 54 12852 972

F1GURE 4. Test over the number of subdomains and the step size

Rurs a0
AN
WAANAN

0

%

FIGURE 5. Nonmaiching finite element decomposition
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6. Conclusion

We have introduced and tested a theoretical and algorithmic framework which
can handle nonmatching grids in three-dimensional situations. This approach
leads to smaller interface problem because they are set on the product space
[T i;, which has a better structure (the notion of corners and edges have dis-
appeared), and an optimal order of approximation error.

We have also presented and tested a parallel implementation of the Neumann-
Neumann preconditioner with coarse grid solver. This implementation han-
dles three-dimensional elasticity and plates operators, matching or nonmatch-
ing grids, and any kind of unstructured partition of the mesh. We obtain such
partitions by using automatic mesh partitioning strategies such as K-means tech-
niques.

We would like now to extend these techniques to complex three-dimensional
CFD problems. But two problems remain open in this direction :

- Which implicit solver to pick for a Navier-Stokes implementation? This
choice does not affect the approximation strategy but has a direct consequence
on the choice of the substructuring algorithm.

- What is a consistent nonmatching grid approximation of stabilized advection
problems, especially in the limit of vanishing viscosity? Is it consistent with a
nice multidomain approximation of the pure hyperbolic limit?
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