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On Generalized Schwarz Coupling Applied to
Advection-Dominated Problems

K.H. TAN AND M.J.A. BORSBOOM

ABSTRACT. Schwarz methods can be interpreted as domain decomposition
methods in which a local mechanism at interfaces is used to restore itera-
tively the connection between artificially decoupled subproblems. The speed
of convergence of these iterative processes can be improved significantly by the
choice of a proper coupling mechanism. If known, properties of the discretized
problem can be taken into account in such an optimization of the coupling.

In this paper a flexible local coupling mechanism is proposed that can easily
be tailored to properties of the discrete problem. It consists of parameterized
interface conditions, which are formulated with the use of virtual unknowns.
Besides a Dirichlet and a Neumann part, tangential and mixed derivatives are
involved in these interface conditions. The coupling technique is combined
with the block-Jacobi iteration, resulting in a generalized additive Schwarz
method. Its convergence properties are analyzed and optimized for a number
of simple time-dependent advection-dominated problems, discretized by means
of central finite differences.

1. Introduction

Schwarz methods can be introduced and investigated in both a continuous and
discrete setting. Consider the continuous problem Lu = g in a domain  that has
been subdivided into two non-overlapping subdomains €2 = Q; U Qs with common
interface I, Q; Ny = I'. Then in a continuous setting this problem is typically

reformulated as:

(1) Lu =g in Q,,
(2) @Z(ul) = q)z(’ulg) onl;cl,i=1,...,1,
(3) \I!j(u2) = \I'j(ul) onT; C rij=1,..,J,
(4) LU2 = g2 in Qz f
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complemented with appropriate boundary conditions on 8 \I' and 0Q\I'. If
the coupling equations are chosen such that unique solutions u; and us exist for
which holds that u; = u|q, and us = u|q,, the Schwarz formulation is said to
be equivalerit with the original problem formulation. In general, many ®; and
U, lead to equivalence. This freedom is exploited in optimizing the convergence
speed of domain decomposition methods derived from (1)-(4). A suitable choice,
resulting into fast convergence, should be made from the many coupling operators
that guarantee equivalence. For some recent examples of operators proposed in the
literature we refer to [1] and [3].

In the construction of coupling operators that maximize the convergence speed
of domain decomposition methods for discretized problems, the discrete equivalent
of (1)~(4), rather than the continuous problem itself, is to be considered. For this
reason we describe in section 2 a discrete equivalent of (1)—(4). It is formulated
with the use of so-called enhanced systems of equations, as introduced in [3]. In
section 3, a simplified model problem is formulated. For this problem, a specific
form of a parameterized enhancement is proposed. In section 4, the convergence
behavior as a function of the parameters of the enhanced system will be examined
and optimized. The resulting convergence rates are considerably better than the
ones that can be obtained with the usual combinations of Neumann and Dirichlet
conditions, as will be illustrated with some numerical results in section 5.

2. A discrete Schwarz formulation

Consider a system of linear equations Au = f for which a unique solution exists.
To introduce a discrete counterpart of (1)—(4), let this system be partitioned as:

:
A Aly Al A

- i i U1 fi

(5) 1‘}21 1‘}22 122 1‘}23 by _ f f,
Ay Aby A As U i

Ay Ay, A5, Ag 2 Fa

The dimensions of the subvectors are ng, nt, n7, and ny, respectively. Usually, the
partitioning will be such that n}, n} < ny, n,.
Consider the following enhanced system of equations:

(| Au A, 4, 0 0 Ap \ . [
Ay Ay, A, 0 0 Ay & £

o |lom s ] moso (el |0
0 -R g R S 0 Cr 0
Ay 0 0 AL, A, Ay cr T
An 0 0 Ay, AL, A / €2 f2

~l s . -
the;e e and ¢} %re 7\:recto’lz:s of dlmelnsmnTn’I and nj, respectively.
t ¢ = (CI,CI,CI,CQ) y Co = (CI,C;) sy = (fl?f%sf;? fZ)T and g2 = (O‘O)T
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Equation (6) can be written as:

o (2 22)(2)=(2).

A {1112 0 A 0 Al

A21 Al 0 A23 0 AT

where By = ° 22 2 = b 22
e Fu A 0 A5, A » B Ay, 0 )

A1 0 A%, Ass Al32 0

0 R[ _ Sl 0 >/ 1
By = 0 —R" ST 0 ), and By = ( RR; _S:S,T ) . We have the following

theorem from [2].

THEOREM 1. Enhanced system of equations (6) has an unique solution ¢ for
which holds ¢, = wy, for k = 1,2, ¢t =& = ul and ¢ = & = 7}, if and only if

B! exists.

Proof: If B, exists, the Schur complement system (B — 312B2—21321)51 =q

is precisely the original system of equations A¢; = f. As A was assumed non-

singular, it follows that &; = u, and hence & = u} and & = uj. Conversely, let

c be the (unique) solution of (6) for which the equalities of theorem 1 hold. Then
! 1 Iz

( ;2}3 _'S‘;,r ) ( Z ~ g ) = ( 8 ) has only the trivial solution. Hence By is

non-singular. 0

Enhanced system (6) is the discrete counterpart we were looking for. The two
middle rows represent the (additional) coupling equations, the first two and last two
rows represent the original discrete problem, while the existence of B;,' guarantees
equivalence with the original problem Au = f.

To solve Au = f, we propose the domain decomposition method that consists
of block-Jacobi iteration, applied to an enhanced system of the form (6). In this
block-Jacobi iteration the blocks correspond with the substructures, indicated in
(6).

For discretizations with local support, cf, and ¢} can be chosen such that A;j,
Ays, Agy and As; vanish. The optimization of the convergence speed boils down to a
proper choice of R!, §¢, R™ and §”. The only constraint on this choice is given by the
condition of existence of Bs,', which is a condition independent of the discretization.
For a cell-vertex scheme using three-times-three-point computational molecules on
a two-dimensional structured grid, these submatrices already disappear if ¢} and <7
are chosen as the vectors consisting of the unknowns defined ou two adjacent grid

lines, with the interface in between.

3. A discrete model problem

Consider the two-dimensional advection-diffusion problem, with uniform flow
field:

Jc Oc de o2 o? .
(8) _+“‘;+”5§’Q(5§+5§5) in2xT,
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with = [0,2] x [0, 1], time interval T = [to, o + T; constants u,v, D > 0, and
¢:QxT — R. We restrict ourselves to cases where advection is dominant over
diffusion (Pe > 1). On (, a uniform cartesian grid with size (Az = Tli_lz’ Ay = %)
and (I; + I> +2) x (J +2) nodes has been defined to discretize equation (8), using
three-point central differences in space and Euler backward in time. Depending on
the flow direction, inflow or outflow conditions are used at the physical boundaries.
For domain decomposition purposes, the domain is subdivided into two vertical
strips, with common interface I' normal to the z-direction, having I x J and Iy X J
internal grid points respectively. Courant and cell-Peclet numbers are defined as:
CFL, := ’—‘AA—; and Pef, := &B“’. Similar expressions are defined for the y-direction.

Conforming to the theory of the previous section, (I +2) x (J+2) unknowns are
defined for each subdomain k, k = 1,2, thus effectively using extended grids with
2J + 4 additional unknowns. These unknowns are denoted by ¢;?, i =0, ...,Ix +1,
J=0,.,J+1, k=1,2. On the virtual overlap consisting of two adjacent vertical
grid lines, the subvectors ¢4 = (ci*, ..., ™7 and ¢f = (0, ...,cl7)7 are
defined, together with the enhancement vectors & = (c{l"'l’o, ...,c{1+1’J+1)T and
&= (cg’o, ves cg’J'H)T (cf. (6)). So to close the system of equations, 2.J +4 coupling
equations have to be added. For our advection-dominated model problem (8) they
have been chosen as:

B
2Ay Hy
B
27y My

« 1.4
6y) + 5a:(‘A—m‘ -+ %N'y&y) Ci‘lﬂ’] =

8
28yM

1 é ~ 6 1
( .%(5 + §A—yﬂy5y) + 6w(A_$‘ - m#y%) yez? =

(1l +

1 o L.
(pal5 + 8y) + 8a( 5 + 6,))e2? L i=1,..,J,

(9)

v 6 3.
6y) + 5“”(5 - §A—yﬂy5y> )Cfﬁz !

1 6 .
(Mz(§+m#y i=1,..,J,
where pi; and 6, are defined as: §,¢' = ¢**3 — ¢~ %, ¢t = ¢i+$ +¢i—%. Operators
py and 6, are defined analogously. Note that equations (9) are the discrete equiva-
lent of (2) and (4) involving c, —g% at the interface, and g—; at the boundaries of the
extended subdomains. The 4 remaining coupling equations (at the intersection of
the interface with the physical boundaries) are defined in a similar way, except for

the number of unknowns involved (8 instead of 12), see 12]

4. Convergence analysis

The optimal value of the coupling parameters a, B, v and § is estimated by

means of a simple Fourier analysis. We assume that the convergence error e of
the mth iterand, e™ = ¢™ — ¢, can be written as:

J—1
(10) g™ = EZ‘, [Fe(O9) + G 1] exp(uwej)
=0

Wit'h 1 = \/—1-and we = 2mfAy; A, and A7 are determined by the discretization
while the amph.tl.ldes EYy and G are determined by (9) and by the left and right
boundary conditions. Straightforward calculation shows:
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PROPOSITION 1. For sufficiently small CFL-numbers, the rate of convergence
per Fourier mode can be approzimated by:

[1 + A N a(Al - 1) 4 B sin(wl)z][i\;; +1, (1~ Xp) 4 6y sin(we)
o2~ ? Az _ Ay 2 Az Ay
¢ [)\}7 +1 + a(l— X)) + ,Bsin(wz)z][l + X + YA, - 1) + 5sin(wg)z]
2 Az Ay 2 Az Ay
Here 5\2 denotes /\—11; In our numerical experiments, we approximately solved the

minimax problem: min,, g s max; p; to estimate the optimal coupling parameters
for (9). (The coupling parameters in the 4 remaining coupling equations were
determined experimentally.)

]

5. Numerical results

In this section we report on some numerical experiments, where we have used
results of the convergence analysis. In all cases we used I; = I = J = 10, and
Pe; = Pe; = 10°.

To assess the importance of coupling parameters and the benefits of the inclusion
of parameterized tangential derivatives in the coupling conditions, we varied the
coupling parameters for a skew velocity field CFL, = 1, CFL, = 2 and computed
the rate of convergence by determining the spectral radius of the error amplifica-
tion matrix of the block-Jacobi method. The results are shown in figure 1. In the
first figure o and  were varied, keeping v and § fixed at their (experimentally
determined) optimal values. In the second figure, the opposite case was considered.
For this example the convergence analysis predicts approximate optimal coupling

Asymptotic rate of convergence (£oo) ' 'AS}’IflPtO'tic rate of convergence ,(‘Dm).

HAY

23 o8 D4 22 0 02 04 0¥ o8 1
L

'Aa_: X3

FIGURE 1. 2-D: varying coupling at interface, CFL, = 1,CFLy =2

parameters: £ ~ 1.27, 74%} ~ 144, L =~ —0.19, EA% ~ 0.56. These are very

close to the experimentally determined optimal values, both sets of (theoretically
or experimentally determined) parameters resulting in convergence rates of approx-
imately po = 0.05. The best convergence rate with the use of combinations of ¢
and % only, turns out to be p = 0.3, which is considerably worse. .

We also compared several coupling mechanisms for a number of different flow
directions. Velocities (u,v) were chosen such that (CFL,)? + (CFL,)? = 2. This
time periodic boundary conditions in y-direction were used. In figure 2 the ob-
tained convergence rates are shown. In the figure, DD denotes Dirichlet-Dirichlet
coupling at the virtual grid points (& = -‘%ﬁ, v = *%, A=6=0). NDlisa



130 K. H. TAN AND M. J. A. BORSBOOM

Neumann-Dirichlet coupling (o = co and = 72 = 62 = 0). ND2 is an extended
Neumann-Dirichlet coupling where the ‘Neumann’ condition consists of a one-sided
discretization of the advective part of (8) at the interface (2 = CFLg, B = CFL,,
~ = § = 0). Finally, GND is our generalized Neumann-Dirichlet coupling, with
parameters chosen according to the approximate optimization.

Asymplotic rate of convergence

m“[ 005 04 048 an—u_iT nia o.;s u:ft 045 05
angle ()
FIGURE 2. 2-D: 2 subdomains, varying angle of flow (w.r.t. x-axis)

The results indicate that for any flow angle, a suitable subdomain coupling is
obtained with our approximate optimization of (9).

6. Concluding remarks

In this paper we have briefly described a flexible local coupling mechanism that
allows an improvement of convergence speed of domain decomposition methods by
tailoring the coupling to the discretized problem to solve. Full details can be found
in {2]. Although in section 4 only a few coupling parameters were optimized, numer-
ical results nevertheless show that in this way already some very good convergence
rates can be obtained. The inclusion of a parameterized tangential component in
the coupling algorithm appears to be essential. Recently obtained results with a
slightly extended parameterized subdomain coupling by including several mixed
derivatives show a further improvement of convergence rates.

The presented approach can be extended easily to variable-coefficient and non-
linear problems when discretized on a curvilinear, structured grid, optimizing the
coupling parameters locally in a problem-dependent way. This work is currently in
progress and will be reported on in the near future.
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