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Abstract

We present a parallel multi-domain algorithm for the solution of the
incompressible Navier-Stokes equations. A high-order scheme is employed
for the time discretization. The discretization in space is based on Fourier
methods. For the interior subdomains we use an overlapping Local Fourier
Basis technique, for the boundary subdomains - a non-overlapping Fourier-
Gegenbauer method.

The matching of the local solutions is performed via a direct point-
wise procedure on the interfaces, using properly weighted interface Green’s
functions. The unknown coefficients are found explicitly in terms of the
jumps of the solution and its first derivatives at the interfaces.

The localization properties of the interface Green’s functions are ex-
ploited in order to simplify the matching relations so that communication
is reduced mostly to local data exchanges between neighboring subdo-
mains. In effect, the parallel algorithm becomes highly scalable with the
percentage of the global communications decreasing as the resolution re-
quirements of the problem increase.

1 Introduction

Parallel multiprocessor computers are becoming indispensable for large-scale sci-
entific computing, in particular, in computational fluid dynamics (CFD) where
direct numerical simulations at high Reynolds numbers are one of the principle
means of research.

The high performance of parallel machines can be realized only if effective
parallel algorithms are supplied. An efficient parallel strategy for CFD prob-
lems is domain decomposition. The geometric domain decomposition (DD) is
intrinsically suited for the purposes of parallelization since neighboring pieces
of space (subdomains) can be allocated to processors with short communication
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links. Such a decomposition is in agreement with the natural data dependencies
of elliptic and time-parabolic problems. The original problem is solved indepen-
dently in each processor, then some patching procedure is employed to enforce
the continuity conditions on the interfaces. Such a patching step requires com-
munication between processors. The objective of any DD method is to minimize
the interprocessor communication and the amount of data to be transfered in
order to avoid communication and synchronization bottlenecks.

Numerical simulation of fluid flows at high Re numbers requires high reso-
lution in time and space. Spectral methods, using series expansions in terms of
polynomial or trigonometric functions, are most appropriate for such problems.
For smooth flow fields these methods converge exponentially fast as the number
of modes increases. However, all spectral methods are inherently global as they
couple all variables in the domain for the computation of any local quantity.
The implication of this fact for parallel processing is that parallel algorithms
using spectral methods are expected to become inefficient in the case of mas-
sively parallel processor due to communication bottlenecks (but see [2] for the
spectral element approach).

In [5, 6, 9] a low communication multi-domain approach is developed. A
notable feature of this approach is that it makes use of Fourier methods for space
discretization. A modified Local Fourier Basis (LFB) technique [1} is employed
for the smooth decomposition of the original problem into subproblems. The
use of the Fourier basis leads to a great reduction of the parallel complexity as it
makes it possible to match independently each separate harmonic in the spectral
space. Another important feature of this approach is that it takes advantage
of the local behavior of the Green’s functions employed to impose continuity
conditions at the interfaces. As a result, the influence of remote domains on
the processing at a particular location becomes negligible and the interprocessor
communication is confined to local data exchange between neighboring units.

This paper is a further development of the local Fourier methods for the solu-
tion of PDEs in multi-domain regions. A novel feature of the present algorithm
is the combination of the LFB technique, applied in the interior subdomains,
and the Fourier-Gegenbauer (FG) method of [3] in the boundary subdomains.
The use of a non-overlapping FG method enables us to treat non-periodic prob-
lems. The method is applied here to the incompressible Navier-Stokes equation
for regions decomposed into parallel strips or rectangular boxes.

2 Formulation of the Problem and Numerical
Schemes

We are interested in the numerical solution of the unsteady incompressible
Navier- Stokes equations that govern viscous flows with constant properties:

% =Re 'V2v+N(v) - VII infc R (2.1)

Here v(x,) = (u,v, w) is the velocity, subject to the incompressibility constraint

V.-v=90 in 0, (2.2
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II is the total pressure, and Re is the Reynolds number. The nonlinear term is
written in the rotational form

N)=vx(Vxv). (2.3)
The numerical solution of the problem (2.1)-(2.3) with specified boundary con-

ditions requires discretization in both time and space.

2.1 Discretization in Time

The discretization in time is performed via the third-order splitting algorithm
of [7]:

N 2 - 2
V=3 javt? :
qz; 2 =Y BN, (2.4)
q=0
‘2’—{’__ +1 2 n+1=i_ ey 2.5
A= vt vAr Atv ¥, (2.5)
n+1l 2
YoV = V o Re-ly2yntl, (2.6)

It consists of an explicit advection step (2.4), a global pressure adjustment for
incompressibility (2.5) and an implicit viscous step (2.6).
The high-order approximation used for the pressure boundary conditions is:

AT+l 2 2
5 =V [ZﬂqN(v”‘q) + Re™! Zﬁq(—v x (Vxv)" 9  ondf
g=0 q=0
2.7

where v is the direction normal to the boundary.

Semi-implicit schemes of this type have much less severe restriction on the
time step than fully explicit schemes. However the parallelization of such
schemes is considerably more difficult because the boundary values at inter-
faces are not known explicitly and thus the local problems in subdomains are

globally coupled.

2.2 Discretization in Space

The splitting procedure in time results in two types of elliptic equations, of the

Helmholtz type
Vi — Nu = f(z,y), (2.8)

and of the Poisson type
Viu = f(z,9), (2.9)

which have to be solved repeatedly (for each time step). The parameter A in
(2.8) is related to the time-stepping increment, A x 1/ VAL )
The solution of Eq. (2.8), (2.9) is based on spectral methods with a Fourier
basis. The Fourier method is the most efficient for the evaluation of spatial
derivatives since the differential operators are represented in the transform space
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by diagonal matrices so that harmonics with different wave numbers remain un-
coupled. Another advantage of the Fourier method, when compared to Cheby-
shev or Legendre based methods, is that it has uniform resolution and is thus
most appropriate for turbulence computations.

However it is well known that exponential (spectral) convergence of the
Fourier series takes place only if it approximates a continuous periodic func-
tion. For a continuous but nonperiodic function, which has a discontinuous
periodic extension, the truncated Fourier series does not converge uniformly
near the boundaries giving rise to spurious oscillations of order O(1) (Gibbs
phenomenon). Therefore, when the Fourier method is applied to the solution
of nonperiodic problems, like the elemental problems in subdomains, the key
question is how to remove the Gibbs phenomenon.

We use two approaches in order to preserve spectral accuracy: a modified
Local Fourier Basis (LFB) method of [1], implemented in the interior subdo-
mains, and the Fourier-Gegenbauer (FG) method of [3]. In the first approach
a smooth decomposition of the source function f(z,y) is performed by using a
system of overlapping bell functions. Then the local Fourier method is applied
within each subdomain (see |5, 6] for more details).

The second approach makes use of re-expansion of the (local) Fourier partial
sums into rapidly convergent Gegenbauer series. This technique is implemented
in the subdomains adjacent to the boundaries where overlapping of two contigu-
ous subdomains is not possible in the case of non-periodicity (e.g. for Dirichlet
or Neumann boundary conditions).

The rapid convergence of the Gegenbauer series is related to the fact that
the Gegenbauer polynomials G7(z) are the solutions of singular Sturm-Liouville
problems (I is the order of the polynomial; A is a parameter appearing in the
weight function (1 — 22)*~1/2), Unlike the Chebyshev or the Legendre poly-
nomials, the Gegenbauer polynomials constitute a two-parameter family. It is
proven in [3] that in some parametric region A, | oc N (N is the number of
the Fourier coefficients, representing an analytic and nonperiodic function) the
Gegenbauer series converges exponentially. The application of the FG method
for the solution of nonperiodic PDEs is described in [10].

The FG method is a good choice for our purpose because it operates inside
the interval where the function is defined, so that it does not require overlapping
of subdomains. Also, the FG method has uniform resolution like the LFB
method, so that both Fourier techniques are easily combined.

However, the resolution properties of the FG method are much worse than
those of the Fourier method or the LFB method. Therefore the FG method by
itself is too expensive to implement in the whole domain. The combination of
both the LFB and the FG techniques meets the requirement of high efficiency.

3 The DD Technique in 1-D

We describe our Multi-domain Local Fourier (MDLF) approach as applied to a
modified Helmholtz equation in 1-D:

2
%1:% ~Myu=f(z), z€ [0, L. (3.1)
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The computational interval L is divided into P pieces (subdomains) of arbitrary
size l,, n=1,2,..., P.
The algorithm consists of two steps:

Construction of the elemental particular solutions. We decompose (3.1) into lo-
cal subproblems for ug,") (%), = € [Tn_1,Zy] and solve them independently
in each subdomain with arbitrary boundary conditions on the interfaces.
The LFB technique is employed in the interior subdomains and the FG
technique in the boundary subdomains.

Matching step. The interface conditions impose matching of adjacent local
solutions at z = Z,: ul™ = u{™V, d—‘iuﬁ") = %u£n+1). The matching
procedure makes use of the properly weighted interface Green’s functions
hil ) (x) which satisfy the homogeneous form of (3.1). For each interface
Zp, these are two exponential functions decaying away on each side.

The smooth global solution is a linear combination

P
w=Ju®, o™ =u{ + A8 + BA" (3.2)

n=1

The unknown coeflicients A4,,, B, can be found explicitly in terms of the
jumps of uﬁ"), duz(,n) /dz at the interfaces z = Z,, (see [6] for more details).

This two-step algorithm can be viewed as a reduction of the full matrix,
representing the elliptic operator in (3.1), to a block-diagonal form (see [4]).
It results in a great reduction of the parallel complexity. Instead of a global
coupling of the collocation points in the whole domain (which necessitates a
global data transfer), the interaction is confined mostly to the neighborhood of
the subdomain of interest. However, all interface points remain coupled globally.

An important feature of the MDLF approach is that it takes advantage of the
local behavior of the interface Green’s functions in order to decouple the match-
ing relations. For small enough time steps At the functions Ay decay rapidly
away from the interfaces so that the influence of remote interfaces become neg-
ligible. In effect, only local communication between neighboring subdomains
(processors) is important. Note that the localization property of the modified
Helmholtz operator, resulting from an implicit time discretization procedure,
reflects the locality of the diffusive linear operator in the evolution problem

2.1).

( ())n the contrary, the Poisson equation (2.8) describes equilibrium processes
with global interactions. Therefore the solution of this equation requires global
communication between subdomains. Nevertheless, we will show that in two (or
more) dimensions the necessary global communications constitute only a small
percentage of the required communication.
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4 Extension to 2-D

The previous MDLF technique can be extended to two dimensions without
loosing the property of locality. We consider a computational region Q2 =
(0,L;) x (0, Ly) divided into parallel strips or rectangular cells.

Case of strips. After applying the FFT in the periodic direction y along
the strips we get a set of uncoupled 1-D ODEs for the Fourier coefficients 4 (z):

d2,a(") R N
= N = [ (@) (4.1)

where A2 = A? + k? for the modified Helmholtz equation and A2 = %? for the
Poisson equation. These problems are solved by using the 1-D routine, described
in section 3.

An important observation is that even in the case A = 0, Ax # 0 for k # 0,
the homogeneous solutions of (4.1) decay exponentially as functions of z. Thus,
a global matching procedure is required only for the long waves, k < k,, whereas
the short waves, k > k., can be treated by using local matching on the interfaces.
The cut-off wave number &, should be chosen in accordance with the prescribed
accuracy.

Let us denote the number of collocation points in the z and y directions as
N; and Ny, and define N,/N, = P” where P is the number of subdomains.
Then 1 = 2k./N, will be the relative amount of equations (modes) treated
locally. It can be shown that for v = 0, that is N, = N,, the relative amount
of local communication 77 o< v/P. Another limiting case, v = 1, corresponds to
N, = const, Ny x P (the resolution is changed only in the direction of strips,
e.g. the case of a long channel). In this case 7 is independent of P, i.e. the
algorithm is fully scalable.

Case of cells. In this case the direct point-wise matching at all interface
points (in 2-D), using the corresponding two-dimensional interface Green’s func-
tions, results in a large linear system. The use of the LFB technique allow us
to perform matching in the Fourier space for each Fourier harmonic indepen-
dently. The procedure consists of several matching steps alternately in z and y
directions. The maximum precision is attained after 2 — 3 iterations (for more
details see [9]). The analysis of scalability in this case is similar to the case of
strips.

5 Results and Conclusion

To demonstrate the accuracy of the MDLF method we consider the Kovaznay
flow (8], which is an exact solution of the Navier-Stokes system (2.1):

u = 1— e’ cos(2ry),
U= %e’”’ sin(2my)

where p = Re/2 — (Re?/4 + 4n?)1/2. The domain decomposition into strips
is considered. The computational parameters are: P = 4, N, = 128, Ny =
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32, Re = 40. Fig.1 shows the error (in the maximum norm) as a function of
At3. The linear dependence, which is in agreement with the third-order scheme
(2.4)-(2.7), gives an evidence that the spatial errors are below the temporal ones
in this range of At.
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Figure 1:

To summarize, the MDLF approach, based on the local Fourier methods,
overcomes most of the global coupling, inherent both in the use of a spec-
tral method in space and an implicit discretization in time. It presents a low-
communication, highly scalable parallel algorithm.
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