Contemporary Mathematics
Volume 180, 1994

ELLAM-Based Domain Decomposition and
Local Refinement Techniques for
Advection-Diffusion Equations with Interfaces

H. WANG, HK. DAHLE, R.E. EWING, T. LIN, AND J.E. VAG

ABsTRACT. We combine Eulerian-Lagrangian localized adjoint methods (EL-
LAM) with domain decomposition and local refinement techniques to de-
velop two nonoverlapping iterative schemes for advection-diffusion equa--
tions with various physical/numerical interfaces.

1. Introduction

Advection-diffusion equations arise from many important applications and
often present serious numerical difficulties. Most numerical methods exhibit
some combination of excessive numerical dispersion or nonphysical oscillation.
Moreover, practical advection-diffusion problems often have various interfaces
that introduce extra difficulties. Physical interfaces arise from the modeling of
transport processes in composite media and lead to advection-diffusion equations
with discontinuous coefficients. Numerical interfaces arise from the application of
domain decomposition and local refinement techniques. An identifying feature of
groundwater contaminant transport and many other applications is the presence
of large scale fluid flows coupled with transient transport of physical quantities
such as pollutants, chemical species, radionuclides, and temperature, which are
generally smooth outside some small regions and may have sharp fronts inside
where important chemistry and physics take place. An extremely fine global
mesh in both space and time is impossible due to the excessive computational
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cost. A feasible approach is to apply domain decomposition and local refinement
techniques by partitioning the global domain into a number of subdomains and
solving the problems with fine meshes in both space and time within the sharp
front regions (subdomains) and coarse meshes outside (other subdomains). This
way, both accuracy and efficiency can be guaranteed, but at a cost of introducing
numerical interfaces between different subdomains.

Many domain decomposition and local refinement techniques have been devel-
oped for elliptic and parabolic equations, but it is more difficult to develop these
techniques for advection-dominated equations. In this case, locally generated
errors at the interfaces can be propagated into the domain so that the overall
accuracy is decreased; improper treatment of the interfaces might destroy the
stability of the numerical methods. Most existing methods for interface prob-
lems for advection-dominated equations employ the Eulerian approach and often
yield numerical solutions with some combination of excessive numerical disper-
sion or oscillation. Extremely small time steps have to be used to maintain the
accuracy and stability of these methods. While Eulerian-Lagrangian methods
can overcome these problems to some extent, they cannot treat general bound-
ary conditions and are therefore difficult to implement for interface problems for
advection-dominated equations.

Eulerian-Lagrangian localized adjoint methods (ELLAM) [1, 2] (and the ref-
erences cited there) have been successfully applied to solve advection-dominated
equations and have yielded numerical solutions free of oscillations or numerical
dispersion. ELLAM maintain mass conservation and treat boundary conditions
systematically. In this paper we present two types of ELLAM-based decompo-
sition and local refinement (in both space and time) techniques for the interface
problems for the following one-dimensional model equation

(1)  Lu=swu+ V(e t)hu— Dz, t)u), = f(z,t), z € (a,b), t € (0,T).

The boundary conditions at z = @ and z = b can be Dirichlet, Neumann, or flux
conditions, and different types of boundary conditions may be specified at z = a
and = = b. In addition, an initial condition is needed to close the system.

In a physical interface case, V{(z,¢) and D(z,t) are smooth except for the
interface £ = d where either V(z,t) or D(z,t) or both have the first type of
discontinuity with respect to z. Then, (1) is closed by the interface conditions:

u(d—,t) = u(d+,1), t € [0,7],

@) (Vu — Du,){d—,t) = (Vu — Du,)(d+,t), tel0,T].

Numerical interfaces arise when different meshes are imposed over different
subdomains. We may have both physical and numerical interfaces at the same
locations. For simplicity, only one interface z = d has been assumed to be
present; generalization to several interfaces is straightforward. Also, V(z.t) is
assumed to be positive, so z = a and x = b are always the inflow and outflow
boundaries, respectively.
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2. An ELLAM Scheme

In this section we present an ELLAM scheme for equation (1) with smooth
coefficients. Let I and N be two positive integers. We define the partitions of
space and time as z; = a+iAz (1 =0,1,... ,I) and t* = nAt (n=0,1,... ,N).
In the numerical scheme, we use a time-marching algorithm to solve (1). We
consider space-time test functions w that vanish outside of [a, b] x (¢, t"*!] and
are discontinuous in time at each time level t*. With these test functions, we
can write the weak form for equation (1) as

fab u(z, " Hw(z, " l)dx + f::ﬂ f: Dugw,dzdt
3) + f::H (Vu — Dug)wlbdt — ftfﬂ f: w{w; + Vw, )dzdt
= [Pu(s, (e, t)dz + [ [° fwdadt,

where w(z,t%) = tlir? w(z, t).
-t

Based on the ideas of the localized adjoint method and the Lagrangian nature
of equation (1), we define the test functions w to be the standard hat functions
at the time "' (or at the outflow boundary) and to be constant along the
approximate characteristics from "1 (or the outflow boundary) to the time "
(or the inflow boundary), and to be discontinuous in time at time level t* [1, 2].

Putting the test functions w above into the variational form (3), we can derive
an ELLAM formulation. The first terms on both the left-hand and the right-hand
sides of equation (3} are already defined at time levels t**1 and t°, respectively.
The last term on the right-hand side of (3) is the source term that can be
computed directly. The last term on the left-hand side of (3) measures the
errors of the characteristic tracking and is negligible. (In fact, it vanishes when
we track the characteristics exactly.) The inflow and outflow boundary conditions
are naturally incorporated into (3) by the third term on the left-hand side of (3)
when the test functions are not zero at the boundaries. Applying a one-point
backward Euler quadrature to the second term on the left-hand side of (3) reduces
this term to a term at the time t"*! as well as terms at the inflow and outflow
boundaries. Thus, with the known solution at time t* as well as the inflow and
outflow boundary conditions, our ELLAM scheme yields the numerical solution
at time ¢"*!, and the numerical solution at the outflow boundary for outflow
Neumann/flux boundary conditions, or the total flux at the outflow boundary
for the outflow Dirichlet boundary condition [1].

3. Generalized ELLAM Schemes for Interface Problems

3.1. Overview. In this section, we present two types of ELLAM-based do-
main decomposition and local refinement techniques to solve equation (1) with
physical or numerical interfaces or both.

We first demonstrate the ideas by recalling the ELLAM-based scheme for the
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interface problems for first-order advection-reaction equations [2], which is an
extreme case of equation (1) in that the diffusion coefficient D(z,t) vanishes.
Therefore, only an inflow Dirichlet boundary condition is needed at z = a, and
no outflow boundary condition should be specified at x = b. In contrast to
many existing methods that have difficulties in solving these problems, ELLAM
can naturally be applied to do so. In fact, the ELLAM scheme presented in
the last section is valid when D(z,t) vanishes and yields the numerical solu-
tion at time ¢t"*' and at the outflow boundary z = b with the given inflow
boundary condition at = a and the known numerical solution at time ¢*. The
corresponding interface condition reduces to the second equation in (2), which
imposes the continuity requirement on the advective flux across the interface
z = d. Applying the ELLAM scheme to the advection-reaction equation on
(a,d) yields the solution at time t"+! and the left-limit of the solution at the
interface x = d. Then, the interface condition gives the right-limit of the solution
at the interface x = d. With this right-limit as the inflow boundary condition
at = d and the known solution at time ¢*, apply the ELLAM scheme to solve
the advection-reaction equation on (d, b). Moreover, the spatial and temporal
meshes used in (a,d) x [0,7T] and (d,b) x [0, T] are independent of each other.
Therefore, a noniterative and nonoverlapping ELLAM-based domain decompo-
sition and local refinement technique is naturally derived, which treats various
(physical/numerical) interface problems for advection-reaction equations in a
universal way, and fully utilizes the intrinsic physics behind them.

3.2. A Dirichlet-Flux Algorithm. In this section we develop ELLAM-
based domain decomposition and local refinement techniques for the interface
problems for equation (1). Due to the effect of the diffusion term, the down-
stream values of the solutions also affect their upstream values. Thus, an itera-
tive procedure should be used. Among other questions in the development of the
schemes are the following: Which types of outflow and inflow boundary condi-
tions should be imposed at the interface z = d to close (1) over the subdomains
(a,d) and (d,b)? What values should be chosen for these boundary conditions?
Our studies [1] show the following observations. The numerical solutions with
inflow flux/Dirichlet boundary conditions are very accurate, while an inflow Neu-
mann condition is not physically reasonable and the corresponding solutions are
not so accurate as those with flux/Dirichlet conditions. An outflow Neumann
boundary condition is physically reasonable and the corresponding numerical so-
lutions are accurate. For an outflow Dirichlet condition, the numerical solutions
are accurate if a “right” value is specified, and may not be accurate otherwise
because boundary layers will arise in this case. An outflow flux condition is not
numerically stable and should be avoided.

Based on these observations, we propose a Dirichlet-flux iterative scheme for
interface problems of equation (1). With the known solution u(z,t™) at time "
as well as the inflow and outflow boundary conditions at z = ¢ and z = b, we



ELLAM-BASED DOMAIN DECOMPOSITION 365

compute the solution u(z,t"*!) by the following procedure:

(i) Choose an initial guess u(d_,t) = u(z}(t), ) for t € [t*,1™+1], where
z(t) is the foot of the (approximate) characteristics emanating back-
ward from (d, ) at the interface.

(ii) With the given inflow boundary condition at = = a and u(d_, t) as the
outflow Dirichlet boundary condition at z = d, use the ELLAM scheme
to solve (1) on (a,d) and obtain the solution u(z,#**?) at time ¢"+! and
the total flux (Vu — Dug)(d_,t) for t € [t",t"11] at z = d.

(i) The second equation in (2) gives (Vu—Du,)(dy,t) = (Vu—Dug)(d_, ),
t e [tr, .

(iv) With (Vu — Duy)(d4,t) as the inflow flux condition at = = d and the
given outflow boundary condition at z = b, use the ELLAM scheme to
solve (1) on (d,b) and obtain the solution u(z, ") at t**! as well as
u(b,t) or the total flux at z = b depending on which type of boundary
condition was specified at z = b.

(v) Compute u(d,,t) by projecting u(z,t"*+*) back along the (approximate)
characteristics or by a linear interpolation of the solution u with its
values at t* and "t along the (approximate) characteristics.

(vi) The first equation in (2) yields u(d_,t) = u(dy,t). Go back to Step (ii)

_ and repeat the process until the algorithm converges.

Since the exact solution of equation (1) is smooth along the characteristics,
the initial guess chosen in Step (i) provides a “right” value for the Dirichlet
condition at the interface x = d. Then, the ELLAM scheme yields the total
flux (Vu — Dug)(d_,t). Applying the second equation in (2) generates a most
desirable inflow flux condition (Vu—Duy)(d,t) (Step (iii)) at = = d for equation
(1) on (d, b), which guarantees a full mass conservation when we move from (a, d)
to (d,b). The continuity of the solutions is imposed in Step (vi) when we move
back from (d,b) to (a,d).

3.3. A Neumann-Dirichlet Algorithm. A major concern for the Dirichlet-
flux algorithm presented in the last part is that Step (ii) in the algorithm might
introduce some potential error because we computed the flux out of a Dirichlet
condition. In this section, we propose an alternative Neumann-Dirichlet iterative
scheme. Since a Neumann condition is most appropriate at the outflow bound-
ary, we impose an outflow Neumann condition at = = d for equation (1) on (a,d).
While an initial guess u,(d_,t) = u.(z}(¢),t") for ¢ € [t”,#"*1] can be chosen,
it is one-order less accurate than the solution itself due to the numerical dif-
ferentiation involved. Some post-processing techniques can be used to enhance
the accuracy. That is, choose uz(d_,t) = (Pu)(z5(t),t") for t € [t*, "],
where Pu is a post-processed solution obtained from u. Our Neumann-Dirichlet
algorithm can be presented as follows:

(i) Choose an initial guess u,(d—,t) = (Pu)z(z3(t),t") for ¢ € [i*, t7H1].
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(ii) With the prescribed inflow boundary condition at z = a and u,(d—, ) as
the outflow boundary condition at z = d, apply the ELLAM scheme to
solve (1) on (a, d) and obtain the solution u(z, t"*!) at t"*! and u(d_,?)
at the interface z = d.

(iii) The first equation in (2) gives u(dy,t) = u(d-.,t).

(iv) With u(dy,t) as the inflow Dirichlet boundary condition at z = d and
the prescribed outflow boundary condition at = b, use the ELLAM
to solve (1) on (d,b) and obtain the solution u(z,t"*!) at t"+* as well
as the solution or the total flux at the outflow boundary depending on
which type of outflow boundary condition was specified at = = b.

(v) Compute u(d.,t) and (Vu — Duy)(d4,t) by projecting u(z,t"+') and
(Vu— DPug)(z,t"!) back along the approximate characteristics or by
a linear interpolation at t* and "', respectively.

(vi) Applying both equations in (2) yields u(d—,t) = u(dy,t) and (Vu -
Duy)(d—,t) = (Vu — Duy)(ds,t). Then obtain the diffusive flux
—Dug(d_,t) = (Vu — Dug)(d—,t) — Vu(d_,t). Go back to Step (ii)
and repeat the process until the algorithm converges.

This algorithm uses an outflow Neumann condition at x = d for equation (1)
on {a, d) and avoids some potential numerical difficulties from a possibly improp-
erly specified outflow Dirichlet condition at z = d and from the numerical flux
computed out of a Dirichlet condition. Then, imposing u(d;,t) = u(d—,t) (the
first equation in (2) yields a continuous numerical solution across the interface
z = d. The continuity of mass is imposed when we move back from (d,b) to
(a,d) to maintain mass conservation.
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