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Exotic coarse spaces for Schwarz methods
for lower order and
spectral finite elements

OLOF B. WIDLUND

ABSTRACT. Fast domain decomposition algorithms for elliptic problems are typ-
ically two-level methods. The second level enables us to construct iterative
methods with convergence rates that are independent of the number of subre-
gions. The construction of a suitable coarse, global subspace is often the most
interesting part of the design and analysis. We consider several coarse spaces
for lower order finite element methods and we then show that one of them has a
useful analog in the case of continuous, piecewise @, elements defined on cubic
elements. For all these methods, the condition number of the relevant iteration
operator grows only logarithmically or polylogarithmically with the number of
degrees of freedom associated with a subregion, even if there are arbitrarily large
jumps in the coefficients across subregional interfaces.

1. Introduction

Fast domain decomposition algorithms for elliptic problems are typically two-
level methods. The second level enables us to construct iterative methods with
convergence rates independent of the number of subregions. The construction of a
suitable coarse, global subspace is the most interesting part of the design, analysis,
and practice. In this paper, we will briefly survey recent results obtained jointly with
Maksymilian Dryja, Luca Pavarino, and Barry Smith; see [6, 7, 10]. For related
work on multilevel methods; cf. Dryja, Sarkis, and Widlund [4]. See also the papers
by Dryja, Pavarino, and Sarkis in these proceedings.

We first consider several coarse spaces for lower order, h-version finite element
‘methods. There are polylogarithmic bounds for the condition number #(7}) of the
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relevant iteration operator T}, based on such a coarse space and good local spaces.
For several new methods, we have

w(Th) < C(1+ log(H/R));

cf. Dryja, Smith, and Widlund [7]. C is independent of the mesh parameters and
the jumps in the coefficient, but depend on the aspect ratios of the subdomains.
We then consider a Galerkin method using speciral elements and obtain

#(Ty) < C(1 + log(p))*.

The bounds are uniform in the number of subproblems. The number of degrees of
freedom for each subproblem is on the order of (H/h)? and p?, respectively, and the
bounds of the condition numbers are thus polylogarithmic functions of these quan-
tities. Bach subproblem can be handled by a processor of a parallel or distributed
computing system; the size of the local problem will be limited primarily by the
amount of fast memory available to the individual processors.

In this paper, we consider only iterative substructuring methods and only three
dimensional problems. The local problems of an iterative substructuring method
communicate with their neighbors only through the boundary values of the iterates;
this is different from the Schwarz methods that use overlapping subregions.

Earlier important work on iterative substructuring methods for the h-version finite
element methods was carried out by Bramble, Pasciak, and Schatz, [2], Dryja [5],
and Smith [12, 13]. Work on p-version finite element methods is described in Mandel
[8]. Important work on the p-version for two dimensions is described in Babuska,
Craig, Mandel, and Pitkdranta [1]. Results on iterative substructuring for higher
order elements methods for two dimensions are included in Pavarino’s thesis [9],
which also contains results on several domain decomposition algorithms based on
overlapping subregions.

2. The elliptic problems

We consider linear, elliptic problems on a bounded Lipschitz domain Q in R,
formulated as: Find u such that

a(u,’u):/ﬂp(x)Vu-Vvdw = fa(v),YVve V.

p(x) > 0 can be discontinuous, with very different values for different substructures,
but p(z) = p; on the substructure Q;. O =UQ;, ;N Q; =0,i # 5. V is a subspace
of H'(Q) chosen appropriately.

The finite element space is either the space V* C V of continuous, piecewise
linear functions on the elements, into which the substructures have been partitioned,
or VP C V, the space of continuous piecewise ), functions.

For the lower order case, we can, if so desired, use quite general substructures,
which determine a coarse “triangulation”. We can think of substructures as pieces
of a three-dimensional jigsaw puzzle. Each such piece is a union of whole elements.
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For the speciral case, we assume that the region is a union of elements that are
cubes or images of a reference cube under reasonable smooth mappings. No element
should be “too distorted”.

The finite element problems are obtained by restricting u and the test functions
to the space V = V" or V7.

3. Excerpts from additive Schwarz analysis

In this section, we give a brief overview of a useful method of analyzing domain
decomposition methods; see Dryja et al. [6, 7] for many further details.

We decompose the finite element space V into subspaces V;. We need not use a

" direct sum. For each subspace V;, we introduce an orthogonal projection P; onto V;:

a(Pu,v) = a(u,v), WWeEV;, u € v,
or use an approximate solver defined by
a;(Tu,v) = a(u,v), YveV;, ue V.
T, defines the inner pfoduct (-, ) and vice versa.
The major effort in proving a good bound for the condition number of the relevant

operator T' = Y T}, goes into proving that there exist Cy and w, of modest size, such
that there exists a decomposition

N
u:Zui, u; € V; Vu € V, with
=0
N
Z&i(ui,ui) < C2a(u,u), and
=0

alu;, u;) < wi;(ug, u;) Yu; € Vi,

There is also a well established theory for multiplicative, Gauss-Seidel-type meth-
ods that involves the same parameters; see Bramble et al. [3] and Dryja et al. [6, 7].

For many iterative substructuring methods, a local analysis is possible. We can
then compare a¥)(u, u), the contribution of the substructure ; to the strain energy,
to the contributions &l(-j )(ui,ui) of Q; to the preconditioner; we derive upper and
lower bounds for

Pl 8 (ui, ua)
ald) (u , u)

This greatly simplifies the derivation of bounds independent of the jumps of the
coefficients; cf. [7). Exactly one of the local problems, the one which corresponds
to the global subspace, must have the same null space as the local finite element
problem to be able to obtain bounds independent of the number of subregions.
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4. Choosing a good coarse space V

The obvious choice for Vg is V¥ and Q; for the lower order and spectral case,
respectively. However, if all the elements of the other subspaces vanish at the vertices
of the substructures, then #(T") must grow linearly with H/h and p?, respectively,
for three dimensional problems.

We therefore turn to more exotic spaces. As previously pointed out, we also gain
greater freedom in choosing the shape of the subregions.

There are a number of important geometric objects: interiors, faces, edges, and
vertices. We can merge edges and vertices, creating a wire basket basket W; for each
substructure. The subspaces are directly related to these objects. A set of counting
functions describes it all. These functions also define a good coarse space.

The counting functions v; are defined on I'y, the set of nodes on all interfaces
between the substructures, by

v;(z) = number of 8Q; 5, to which = € 8%, ;, belongs
V,L(CE) = 0, T & Ph \ Bﬂi,h

Just one basis function, p;, is related to each ;. It is given by the pseudo inverse
of v;(x), in the Laplace case, and by a similar formula involving the p;, in the general
case. (Special rules are used for boundary substructures.) The p;(z) are discrete
harmonic in each substructure and their span defines our first good coarse space, V%;
see Dryja et al. [6, 7).

The coarse component of the decomposition is selected as

Uug = E Ui fdi-
i

; is the average of u € V® over 09; . This is an interpolation formula, which
reproduces constants.

5. Two additional good coarse spaces

Another good coarse space, V;%, was introduced in Barry Smith’s thesis; cf. [12,
13]. It can be regarded as being wire basket based. The elements of this coarse space
are piecewise discrete harmonic functions. Their values on all of 9; are defined
by the values on the wire basket W;; the value on each face F* is constant and
equals the average ag g+ of the nodal values on the boundary of the face. The related
interpolation formula is given, on ;, by

h . h h ~h
Ipu® = E u(x)er + E Ugpelpe.
x €W} 8FkCo0;

Here 65 = 1,z € F¥ and = 0,z € T, \ F*, and ¢, is the discrete harmonic extension
of the standard nodal basis function of z;. A simple bilinear form is used

ao(u™,ul) = (1+ log(H/h'))hZPi min ||y — iz |7, owys
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where zj(.i) =1,Vj. A linear system results with only one essentially global degree of
freedom, c;, per substructure. Additionally, there is a linear system with a diagonal
matrix that determines the nodal values on the wire baskets.

A different coarse space, Vyj;, for which a bound that is linear in log(H/A) has
been established, is obtained by assigning independent degrees of freedom to the
functions @p+. This is a larger face based space; cf. also Sarkis [11]. We also need to
use high quality local spaces to obtain such a strong bound.

6. A good coarse space for spectral elements

We have designed a wire basket based coarse space for the spectral elements; see
Pavarino and Widlund [10] and additional forthcoming papers.

The values on the wire basket W; of a given @, polynomial are extended to
the faces, and then to the entire cube, by using formulas based on separation of
variables. There are also additional terms similar to those involving the fpz«; one
special function, x;(z,y, 2), is constructed for each face of the cube. We begin with
the values of the function 1 on the wire basket and extend them elsewhere by the
formula just suggested. We then subtract the resulting function from 1 and obtain
k(z,y, z). We write

6
Ii(.’l)‘, Y, Z) = Z K'k(za Y, Z)a
k=1

where each ki(x,y, z) = 0 for five of the six faces of the cube.

The weights of the k) terms can be chosen, as for Vi%, as the averages over the
boundaries of the faces. The resulting space, by construction, contains the constant
functions. A simple auxiliary bilinear form do(-,-) can be constructed with only one
essentially global degree of freedom per substructure.

Acknowledgement: Our results have been obtained jointly with Maksymilian
Dryja, Luca F. Pavarino, and Barry F. Smith.
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