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1 Imtroduction

One may employ mesh refinement techniques if higher accuracy approximation is
required. It is recognized that the global uniform refinement on the whole domain
leads to simple and usually vectorizable algorithms but wastes time and memory,
while local refinement on subdomains minimizes the size of the discrete problem and
improves the accuracy locally but leads to a lower accuracy in the whole domain.

It has been shown recently that a combination of such discrete solutions related
to refinement on subdomains can yield an approximation of higher accuracy and
the procedure can be done in parallel using multi-processor computers if the exact
solution is globally smooth (see [8, 9]). This technique is based on a so-called multi-
parameter error resolution. The crucial point of this approach is to choose certain
independent mesh parameters: According to its geometry, the domain is divided into
some subdomains and covered with different meshes so that the number of independent
mesh parameters, say p, is as large as possible, and an approximation of higher
accuracy can be computed (p + 1) processors in parallel.

We shall prove here that the parallel algorithm based on the multi-parameter error
resolution can produce an approximation of higher accuracy even if the exact solution

is only locally smooth.
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2 A Parallel Algorithm

Consider the finite element solution of the following Dirichlet boundary value problem,
A = in O

{ u f, inQ, 1)

u =0, on 99,

where @ C R? is a polygonal convex domain. Divide 2 into subdomains T = {Q; : j =
1,2,---,m} so that T is a quasi-uniform partition of Q and each {}; is a triangle or
a parallelogram. On each Q; a uniform mesh is imposed, and a quasi-uniform global
partition of Q is formed. Denote the mesh size(s) on Q; by hj,; if Q; is a trangle,
and by hj,; and h; o, the mesh sizes along the directions of the edges of (1;, if ; isa
parallelogram (j = 1,---,m). Among these mesh parameters, some are independent,
say hy,--,hp. It can be proved that the number of independent parameters can be
equal to or greater than 2 even that p >> 2. Let h = maxz{h; : j = 1,---,p},
T* be the partition on Q and let S* be the conforming finite element space on
T" consisting of functions which are linear or bilinear on each triangular element
or each parallelogram element in T". The interpolated finite element approximation
corresponding to hy,---,h, is denoted by u(hy,---,hp). Set ug = u(hq,---,hp) and
uj = u(h, -, hj—1,hj/2,hjt1, -, hp). Then a parallel algorithm for approximations
of higher accuracy is given by

Algorithm.

Step 1. Compute 4;(0 < j < p) in parallel.

Step 2. Set u® = (432%_, uj — (4p — 3)uo)/3.

It is proved later that the composite numerical solution u¢ is a higher accuracy
approximation to the exact solution v of (2.1) in D C€C D* C  if u is smooth on D*.

3 Multi-Parameter Error Resolution

In the following, LI(Q)(1 < g < 00), H*(2), H§ () and W*9(Q)(s = 1,2, ---) are the
usual Lebesgue and Sobolev spaces respectively. Set S = H3(Q) n.Sh.
The Galerkin projection Rpu € S of the solution u of (2.1) is determined by

/thuvvszv, Vv e Sh. (3.1)
Q Q

To discuss the multi-parameter error resolution, we shall compare Rpu with the
Lagrange’s interpolation izu of u. It is known that

/Qv(Rhu —RU) VU= / V(e —ipu) Vv, Yve Sk (3.2)
Q

By the Euler-MacLaurin formula and the integral identity ([3, 5]), the following result
is obtained.
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1,---,p,i=1,2) of 3rd, 2nd and 1st order, respectively, such that

p
/ V(e —ipu) o= Z h?(/ LjuN;iv+ / MjuN; ov)
Q Q r

=1

(3.3)

O(h®)wl1,1,4fu € Hi(Q) N CQ),
O(h?)|lulls,s,0lvl1,6,0,8fu € Hy () N\W3#(Q)(s > 1),

wheret =s/(s—1) and T = Ui<i,j<m (08 N 8SY;) .

For any fixed z € Q, let G, G* € S} be the Green function and discrete Green
function, respectively. Then from Lemma A 1 and A 2 in [1], one can obtain the
following result

Proposition 2. If T is a quasi-uniform partition, then
(i) forany z € Q,1 <t <2,
1G. — G llis0 < ch*~2/% |Inh /2. (3.4)
(i) for any z € D cc D* C Q,

B Y G2 — Gl coa\ne + 1Gallt 0,0 + 1GEl1,00,0\0 < €. (3.5)

Thus, we obtain the following relation between the Galerkin projection and the
interpolation.

Theorem 1. If u € H}(Q) NW3#(Q)(s > 2), then there exists {w1(u), -, wp(u)}C
H} () N C(N) such that the following multi-parameter error resolution formula

P
Rpu =ipu+ E wj(u)hf- + o(h?) (3.6)
i=1

holds on C'(Qy), where Qo CC 2\ Too with I'op = the set of all interior macro-vertices
of Th,
Proof. From propositions 1 and 2,

P
/ V(u—inu) VG = B / LjuN;j Gz + /P M;uN;2Gz)

14
+ 3R Lubia(Gh -G+ [ Miud;a(GE = G) + 002G s
=1 Q T

= i wj(u)hi + O(h?)||ulls,0.0; (3.7)

J=1

where w; (u) = fﬁ Lj'uNj,le + fI‘ MjUN‘,2Gz‘
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Combining (3.2) and (3.7), we obtain

p
Ryu=izu+ Y wi(wh? + O(h?)|ulls,s0- (3.8)
j=1

Similarly, we also obtain the following result (cf [8, 9])

r
Ryu=ipu+ Y wi(u)h? + O(h*|Inh)) (3.9)
j=1

on C(fp) with Qp cC 0\ Ty if the exact soultion is smooth enough, e.g., u €
HI(Q) nC4{Q).
It is easy to see that a linear functional F}, defined by

P
F(u) = b2 (Rou — ipu — ) wi(w)h?) (3.10)
J=1
satisfies:
| Fr(u) )< clujs a0, Vu€ HE Q) NW>*(Q). (3.11)

Thus, combining (3.9) and (3.11), we obtain the theorem by a functional argument.

Theorem 2. If f € WHT(Q)(r > 1) and u € H3(Q) N W32(D*)(s > 2), then there
ezists {w1(u), -, wp(u)} C HE(Q) NC(Q) such that the following multi-parameter
error resoltuion formula

14
Rpu = ipu+ Y wj(u)h? + o(h?) (3.12)
Jj=1

holds on C(D), where D cC D*\T'gp C Q.

Proof. First of all, we have u € H3(Q) N W3 (Q) for some r* > 1(see Grisvard
2). Let w € C§(Q) satisfty w = 1 on Dy and suppw CC D*, where D CC
Dy cC D*. Define u; = wu and uy = u — uz. Then u; € HH(Q) N W3(Q) and
uz € HY(Q) N W3 (Q).

Let z € D, and let I, be a linear functional defined by l5(u) = Fj(uz2). Then from
proposition 2

P
la(w)] < ch™? Z h?(/g LjuaN; 1 (G - G,) + /F MjusN; 2 (Gt - G,))
j=1

+C‘”2|3,1,QHG2“1,00,9\D1
< culsa,o (3.13)
Thus, theorem 1 and a functional argument yield I (u) — 0 as h —» 0,ie.

P2 (Rpus — intn — ij (u2)h2) = o(1). (3.14)
=1
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On the other hand, by theorem 1, we have

h™2(Ryur —ipus ~ Y wj(u1)h?) = o(1). (3.15)
j=1

Combining (3.14) and (3.15), we complete the proof.
Remark. Using the argument in [3, 5], there exists an interpolation operator I, so
that
& P
InRyu =ipu+ Y w;h? +o(h?) (3.16)
=1
holds on C(D). IyRpu is determined by the parameters hy,---,h, and is denoted
by u(hi, -, hp). Thus, a so-called multi-parameter splitting extrapolation technique
leads to
P
u=(4) u; — (4p - 3)uo)/3 = u+o(h?), (3.17)

=1
which holds on C(D), where D CC D* \Tgo C .

4 Other Partitions with Multi-Parameter Resolution.

It is pointed out that similar results can be expected for other kinds of partitions
(cf. [8]): Divide 2 into several convex quadrilateral T = {f,-- -,y } such that T is
quasi-uniform. Let ®;:

z1(€,m) = a;1(1 - (1 — 1) + a;26(1 — n) + aizén + aig(1 - En,

z2(&,m) = b;1 (1= (1 — 1) + b 26(1 — n) + b 3én + bi4(1 — E)n

be the bilinear coordinate transformations from the unit square [0,1]2 to (i =
1,---,m), where (a;;,b;;)(j = 1,2,3,4) are the 4 vertices of the §;. Under the
mapping, a line parallel to £{— or 77— axis in [0, 1]? is transformed into the line linking
the two equipartition points of a two opposite edges in {2;, and globally a quasi-
uniform partition 7" on  is formed. For a function v defined on ;, let ¥ be the
function defined on [0, 1]? by

D=vo <I>,-. (4.1)

Conversely, a function 9 defined on [0,1]? determines a function v on Q; satisfying
(4.1). Let [0, 1] be covered by a uniform mesh. Define
SE(Q) = {v € HA(Q) : v o &; is piecewise bilinear on [0,1]*,i =1,2,---},  (4.2)

'u,=iZo<I>;-'1, on £);,

inw=ipio ®;1, on ),

where i@ is the piecewise bilinear interpolant of @ on [0, 1]2. ixu(z) = u(z) holds for
the nodal points x of 2 and SZ(f2) is determined by some parameters, say hy,- -, hy.
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By induction, it can be proved that for any polygonal domain and with a proper choice
of {Q1,+--,0m}, p satisfies p > 2 even p >> 2. Given

/ u(u—inu)dv = f RICICE 5,)9,0 + Oy (@ — 1))
Q;

0,

+ / P110¢ (@ — i @)BeD + Paady (& — )0y D,
0 2

1
where
P11 = (0y2)2/J, P22 = (Onz2)?/J,
pig = —Onxa0sm2/J, J =|0:210,22 — Onz10¢72],

if Ryu satisfies (3.1) for S?(Q) defined by (4.2). Then there exists an interpolation
operator I, (cf. [3, 5]) and functions w; such that the following formula

P
InRpu=u+ Y wihi +o(h?) (4.3)

i=1

holds on C({D), where D CC D*\Tgo C €.
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