A mortar element method for fluids

Yves ACHDOU! and Jean-Claude HONTAND? and
Olivier PIRONNEAU?3

ABSTRACT

Our interest is turned towards the Navier-Stokes equations. The general trend in
computer architecture being towards message passing coarse grain MIMD parallelism,
we wish to develop robust, fast and user-friendly algorithms for such machines.
Robustness is achieved by selecting well tested methods with known stability and
error properties. Speed is achieved by block decomposition, fast solvers within blocks
and minimal communication between blocks. Versatility is obtained by using non
matching meshes between subdomains and user-friendliness will be obtained by using
a high level language to drive the software as done in FreeFEM (see Pironneau,1994).

1 PROBLEM STATEMENT
The Navier-Stokes equations for incompressible flows are
Diu+9Vp—-VuwVu=0 Vau=0
or, in stream function-vorticity formulation (for constant siscosity »)
Diw—vAw=0 —-AYp=uw

where
_Dt = Bt +u- V.
In most application v is found through a turbulence model such as the k — epsilon
model: 2
Dik — V.wVk = —|VU + VUT|2 +e=0,
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0.

2 GENERAL DESCRIPTION OF THE ALGORITHM

2.1 Time discretization

Total derivatives are approximated by a finite difference formula in space and time,
leading to a Eulerian-Lagrangian method:

Diw=0w+u -Vuw = %[wm+1 —w™oX™] where w™oX(z) = w™(x— 6tu"(z)).

For the velocity pressure formulation of the Navier-Stokes equations, a projection
method for the pressure leads to

Step 1: solve
1
Ap™tt = EEV.umoXm +V.(VoVu™ + f) in Q, 8nplag =0.

Step 2: Solve
um—i—l mtl umoX ™
g T VvVt =

+Vp+f.

2.2  Spatial discretization

A finite element method with a feasible set of finite element space for velocity and
pressure is used (LBB condition) or a stabilized term is added in the pressure equation
if the P! — P* couple is used (Franca et al (1992)).

2.8 The Language Gfem

Such algorithms are fairly standard by now and the difficulty is not so much in the
problem rather than in the infinite possibilities for coupling with other equations such
as turbulence, temperature, electromagnetism.... We are experimenting with a macro-
description of the problem with a dedicated language called Gfem. It used two basic
blocks: an elliptic solver called by the key word ”solve” and a convection operator
instanced by the key word ”convect”. To demonstrate the power of the language we
send the reader to http://www.ann jussieu.fr/freefem /gfem . html

3 TWO BASIC BLOCKS
The first basic block is a general solver for linear second order PDE

au+bdu+cOyu—-V.MVu=f in QcCRC

u=ug, Ooraut+du=g on IN.
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So far only the symmetric case is implemented in parallel with mortars:
au—-V.MVu=finQ, u=uyorau+8,u=gondN

where M = M7 is an R% x R® matrix, not necessarily positive definite.

The second block is the convection operator
w(z) — w(X(z))
where X(x) is the solution at ¢ — 8t of

dX

4 NON MATCHING MESHES

Quadrilateral subdomains are used with cartesian meshes inside each subdomain. Q!
or P! discretization inside each macro-element is used with possible discontinuities
at interfaces. We do not use the mortar element in its generality, but restrict the
macro-mesh to be geometrically conforming.

The subdomains will be large and few of them must be allowed to have at most one
curved boundary if necessary. In this case we require the knowledge of a parametric
description of the curved boundary from which we can then build a map G which
transforms the unit square (the reference element R) into the element @ = G(R).

Meshes in each macro elements are chosen independently. They do not match at the
interfaces beetween subdomains. Therefore, in order to build a finite element space
approaching H'(f2) one has to write a weak continuity constraint at the subdomain
interfaces.

Within each macro element some adaption is done via a small number of parameters
such as the mesh aspect ratio. Of course such mesh do not have the flexibility of
unstructured meshes as used in adaptive FEM. But they allow fast linear solvers in
each block.

5 CHARACTERISTICS IN PARALLEL

The problem is mapped to the reference macro element:
Given z = G(y) v and w(.) find w(X (z) with X(z) = G(Y(t ~ 6t)) and M = G’

W puy,r), Y)=y.
dr

A time stepping procedure such as Runge-Kutta or backward Euler is used:

ot
YR = vE - Mt (YR,
where the time step 6¢ is subdivided into K steps %. To evaluate Mu(Y*,#*) is not
difficult because the mesh being cartesian the values of u can be found once the element
which contains ¥* is known and that can be found by integer divisions.
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However during these sub time steps, ¥* on the curve Y (¢) may leave the reference
macro-element. Instead of continuing immediately the integration process on the
neighbor element which contains the rest of Y () it is much better for parallelism
to store the boundary point {t*,Y (t*)} for later use.

When all the characteristics have been partially computed in parallel, subdomain by
subdomain, a new loop is made with for initial points all the {t*, Y (t*)} corresponding
to interrupted characteristics.

We summarize the process for a mesh made of L macro elements, each having
M; x Nj elements Q. n, with quadrature points Ym n i:

Set tm,n, = 6t for all m,n,!
while some £y, >0
do //1=1to L
form = 1to M; andn =1 to N; do
Loop on doing
Ymmn,l = Ymn,l — ot Muk(ym,n,l)
tm,n,l = t'm.,n,l - K

till £y g <0 O Yy notin ]0, 12

6 A PARALLEL ELLIPTIC SOLVER

6.1 The mortar element method

Consider the model elliptic problem
©— pAu = flg, au-+ O = glag.

Two finite element spaces are chosen, one for u and the other one for the Lagrange
multipliers of the weak continuity constraint. In our case the functions restricted to
a macro element 25 are continuous functions piecewise bilinear on the quadrilateral
mesh of Q : we call @,(€) this space of functions and we introduce the product

K
Qr =[] @n(e),

k=1

which has an obvious canonical basis of shape functions.

Since the meshes do not match at the interfaces, we need to introduce a Lagrange
multiplier space for the weak continuity constraint: for each interface I'y; = Q) U Y
the Lagrange multiplier space is called X, (T's) and the weak continuity constraint is

: (unj, — ) 0) A =0 YA € Xn(Th).
k1

The space X (T'y;) may be constructed either from Qn(Q%) or Q4(€). Assuming
it is built from Qn(Q%), let (A\*)icqo,....s,,} be the traces of the shape functions of
Qr{Q) on Ty, ordered according the abcissa on I'y; of the mesh nodes with which
they are associated. The convergence proof of the method tells us that a good choice
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for Xh(rkl) is
Xn(Crr) = Span{A® + A1, A2, ., A%=2 you—l 4 gy

(the space Span()\i)ie{gw,s“} would be too large for preserving the LBB condition).
Calling U the vector of coordinates of an element u;, of Q;, the weak continuity
constraint yields a set of linear equations for U:

BU = 0.

Similarly the weak form of the PDE is discretized by

Z [urwp, + pVupVwy] +/ aupwy, = Z fwp —l—/ gwh
P elt a0 T an

for all w;, with BW = 0.
This method has the same order of accuracy as its conforming analogon (Bernardi-
Maday-Patera[1991], Le Tallec[1992]).

6.2 Solution of the linear system

At the discrete level the problem is of the type : find U € RY, such that BU = 0 and
WTAU = FTw, YW € RY with BW =0,

or equivalently : find U € RN and A € R, (S = >k, (8k — 2)) such that

A B U\ _(F
BT o AJ TR0/
Iterative solution

The system above is solved by an iterative method in a subspace of constraints.
Preconditionning is necessary for efficiency (see Achdou-Kuznetsov in these
proceedings).

7 APPLICATION TO THE NAVIER-STOKES EQUATIONS
The Navier-Stokes equations in their stream function-vorticity formulation are
9
Diw —vAw =0, —-A¢Y=w, %lsa=1r, 0 =9

We discretize them in time by

;Sl—[wmle —w™moX™ - vAW™Tt =0, —Ap™F =™t
t
So at each time step we must solve
v
w— pAw=f, —AV=uw, %l =g, Y¥Yir=g.
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As this is not in the standard form of our PDE block we use the following splitting:
decompose w and ¥ as w = w! +w?, ¥ = T! + V0 with

W — pAw® = f, WOr=0, and — A¥® =u°, ¥ =y,

and ol o’

wh — qul = (), —A\I’l = wl and % =g— —%, \Illlp =0.
The first set of equations are 2 second order elliptic problems which can be solved
successively and the last equations are a fourth order problem homogeneous in space.
The traces of ¥' and w! can be obtained by a boundary element method (see Achdou,
Pironneau). Alternatively, for laminar flows at high Reynolds number the following

approximation can be used

1 0
Q\—Il—} and — AU =uo!, ¥l =0.

1 120, wlp=——efg—
w! — pAw w'lr ﬁ[g an

8 NUMERICAL TEST

The program is written in C and parallelized with PVM; all test have been made on
a network of HP 735 connected by Ethernet.

8.1 Test 1

Test Parallelism efficiency on a single problem of Helmholtz type, (conjugate gradient
without preconditioning for the Schur complement system on A).

w—Aw=1 -+ SiIl(iL') Sln(y)

wlan = sin(z) cos(y).

The grid has 36 macro elements and a total of 21 000 vertices. On a network of 6
machines the following has been measured:

| processors || cpu time | % com / cpu |

2 58 s 3%
3 39 s 8 %
4 28 s 14 %
6 19 s 26 %

8.2 Test 2: The Navier-Stokes equations

A stream function-vorticity formulation is used with a decomposition at the boundary.
The flow past a cylinder at Re = 300 is computed with 40 macro-elements, 20558
vertices on 3 processors (see figure 1 and 2).

The conjugate gradient method for the Schur complement system for A is much
too slow; so a preconditionner developped by Achdou-Kuznetsov(1995) has been used.
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The following performances are obtained with the grid of 36 macro elements and a
total of 90 000 vertices. The number of iteration for the iterative algorithm (PCG) is
36. In the table below, the column matrix indicates the time needed for assembling
the matrix and for factorizing the subdomains blocks, the column pcg indicates the
time needed for solving one linear system.

[ proc || cpu | com | % com/cpu || matrix | precond. | pcg |

2 486s | 45 1% 416 s 75 67 s
3 330s | 65 2% 289 s 20 s 38 s
4 262s | 8s 3% 227 g 28 8 32s
6 197s | 28 s 14% 151s 32s 3ls

9 CONCLUSION

The Mortar element method allows the use of nonmatching meshes which is a key
feature for time dependent problems with sliding subdomains and for parallel solvers
with domain decomposition. It remains to see if this will make our implicit algorithms
faster than their explicit competitors with unstructured mesh adaption (Mohammadi
(1995) for instance), but it is well worth the programming effort to try it. A 3D
implementation of the same ideas for the Navier Stokes equations is underway. With
modifications, the same method can applied to the equations of electromagnetism and
numerical tests will be presented in a forthcoming paper.
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Figure 1 unsteady flow around a cylinder at Reynolds 300
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Figure 2 mesh used for computation of stream function and vorticity
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