Algorithms for the Mortar Element
Method
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ABSTRACT

We consider the saddle point type linear systems obtained from the discretization of a
second order symmetric elliptic equation by the mortar element method. An iterative
method in a subspace for solving these systems is described. This algorithm is based
on a special class of preconditioners. Several preconditioners are then proposed.

1 INTRODUCTION

The mortar element method introduced in [7], [6], [16] is a finite element method
based on domain decomposition which permits to use meshes non necessarily matching
at subdomain interfaces, or different finite element approximations in different
subdomains. Conformity is impossible since continuity across the interfaces between
subdomains cannot be achieved (the meshes do not match), and one has to impose only
some kind of weak continuity: for each interface I'y;, one has to introduce a suitable
space Wy, of finite element functions supported on I'y;, and the continuity constraint
is that the L?(T'y;) projection of the jump across I'y; on the space Wy, vanishes.
Such a method has many possible advantages:

o If is genuinely suited for parallel computing.
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o It provides flexibility for the construction of the finite element mesh. This
flexibility may be exploited to avoid updating the finite element mesh (
sliding meshes [5]) or on the contrary for adapting the mesh.

The mortar method has been used in [4] for designing a solver for the Navier Stokes
equations.

The aim of this paper is to present a class of solvers for the linear systems obtained
when applying the mortar element method to second order elliptic partial differential
equations. Here we consider the saddle point formulation of the discrete problem where
the weak continuity across interfaces is treated as a constraint and the related Lagrange
multiplier is a discretization of the normal derivative at interfaces, and we choose
to eliminate the degrees of freedom (d.o.f.) interior to subdomains. Other attractive
algorithms can be designed: see [13] for a 3D algorithm avoiding the elimination of the
d.o.f. interior to subdomains, [16],15] for a Neumann-Neumann algorithm, {3], [17] for
substructuring algorithms based on a two level block diagonal preconditioners with
suitably chosen coarse spaces.

The section 2 will be devoted to a brief review on the mortar element method. In
§3, we discuss an iterative method for saddle point problems, namely the so called
preconditioned conjugate gradient in a subspace of constraints introduced in [14]. In
84, we apply this method for designing an algorithm for the mortar method. In §5, we
discuss possible preconditioners.

2 THE DISCRETE PROBLEM
We consider the symmetric elliptic equation

— diva(z)gradu + B(z)u=f in Q, w=0 on dQ, (2.1)
where Q is a domain of RY (N = 2,3), and a ( resp. ) is a positive (resp. nonnegative)
function. For simplicity we suppose that {2 is polygonal and that N = 2.
2.1 The geometry.
Let {Q} be a partition of Q into K non-overlapping open polygonal subdomains:

Q=Ug Q4 and N =0 ifk#L (2.2)

For simplicity, we also suppose that the domain decomposition is geometrically
conforming, which means that the intersection of the closures of two subdomains
is either empty or a vertex or a whole edge. For any 1 < k,! < K, let I't; be the closed
straight segment, possibly degenerate : T'y; = Q. N Q.

2.2 The discretization.

With each 1 < k < K, we associate a family of quasi uniform triangular finite element
meshes Ty, of O with the classical regularity assumption for F.E.M., and we denote
X the related space of P, finite element functions vanishing on Q. Let Ay be the
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maximal diameter of the elements of 7y 5. Let X} denote the product space :

Xp = H KXkh- (2.3)

1<k<K

Note that the meshes do not need to match at interfaces. Therefore, in order to build a
finite element space approaching H(2) one has to write a weak continuity constraint
at the subdomain interfaces. Let us define the space of the Lagrange multipliers for
the continuity constraint: we denote by T'r;, the trace on 9Qy. If [T'x:| # 0, the space
Wk,l,h = {Trkv|rm, v E th} has dimension Ny + 2, ( Ng + 2 is the number of
vertices of 7y p, lying on I'y; ).

For each interface I'y;, one can build the Lagrange multiplier space either from Wk,l, h
or from I/T/l,k,h. One possibility is to choose the space corresponding to the finer mesh:
assuming the Lagrange multiplier space is built from Wk,l’h, let us choose Wy as
the subspace of Wy, 5 of codimension 2 of functions which are constant near the two
ends of I';. Let us call W), the Lagrange multiplier space:

W, = H Weih. (2.4)
<K<K [T [0

Calling b the bilinear form
b: Xh X Wh d [R,
bV, ) = Y / Hin(Veh — Uik ), (2:5)
T

k<l : [Tri|#0
We are now able to define the subspace Yy of X3, :
Y= {vyeXn: Vup € Wy,  b(un, vi) =0}. (2.6)
Calling o the bilinear form :

a: Xp x Xp — R,

- (2.7)
a(up,vy) = Z/ aVug - Vopn + Purnves
k=1" O
the discretization of (2.1) is to find u; € Y}, such that
K
Vvi € Yh, alup,vy) = Z/ I ven, (2.8)
k=1

which is clearly a well posed problem. It is easily proved that (2.8) is equivalent to
the following well posed saddle point problem: find (up, Ap) € X5 x Wy, such that

Vv, € Xy, alup, vi) + b(vi, An) = (f, va), (2.9)
Vi € Wy, b(up, pr) = 0.

For the numerical analysis of the method, we refer to [7], [6]. The choice of the space
W), was made in order to achieve the Babuska-Brezzi inf-sup condition, ( see [6]).
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Remark 1 In [1], a variant of the method has been studied, where the jump
operator is modified by means of mass lumping: indeed, defining the bilinear forms
bkl : th X Wklh — R and blk : th X Wk:lh —R by

b(vh,pn) = D b (vrn, pain) + 0% (in, pran), (2.10)
[Tri|>0

and assuming that the space Wiy, is constructed with the mesh of (i, the idea is to
replace in (2.10) the bilinear form b* by b* obtained by performing mass lumping on
the matrix of ¥, and by keeping 5% unchanged. A new jump bilinear form b is thus
obtained by assembly, and this leads to a new approximation method. With this new
approximation, the same error estimates as in the original method can be obtained
provided the meshes on which the Lagrange multiplier space W}, is built are sufficiently
close to being uniform. As explained later, this modified jump operator may permit
to design easily preconditioners with optimal arithmetical complexity.

3 PRECONDITIONED ITERATIVE METHODS IN A
SUBSPACE OF CONSTRAINTS

Consider the saddle point problem:

(D3NN e

where S is a block diagonal matrix with K blocks S*. We assume that S and BBT
are non singular, and that the blocks S* are symmetric and positive semi-definite. We
define the preconditioner for matrix S as

Rz< i BOT> (3.2)

where R has the same block structure as S. We assume that R is non singular and that
the blocks R* are symmetric and positive semi-definite with Ker(R*) C Ker(S¥).

Following [14}, [12], [2], we apply for solving system (3.1) the Preconditioned
Conjugate Gradient method in the Subspace

Vg = (I -R18)*Vp C Vg, (3.3)

VB:{( X) :BV:O}. (3.4)

Is is possible to use the preconditioned conjugate gradient algorithm because from the
assumptions above, the following results can be proved:

with

1. the matrix RS keeps the subspace Vg invariant, i.e. R™'S8Vg C Vg,

2. the matrix & defines a scalar product in Vg,

3. the matrix R™1S is symmetric and positive definite in Vi with respect
to the energy scalar product generated by the matrix S, i.e. SR™1S is
symmetric and positive definite in Vg.
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Remark 2 Under the condition: R ~ S positive (or negative) definite, it is possible
to choose Vg = (I — R™'8)Vy C Vp instead of (3.3), see [8], [11].

4 ELIMINATION OF THE D.O.F. INTERIOR TO
SUBDOMAINS

We supply X, and W), with their natural basis of nodal functions. Then the matrix

form of system (2.9) is
(2 %)(0)-(7) =

The matrix A is a block diagonal matrix (one block per subdomain), each block
corresponds to a discrete Neumann problem in subdomain Q, except if Qz N 9N # 0.
It is possible to eliminate the d.o.f. located in the interior of subdomains by solving
discrete Dirichlet problems. This leads to the system

(NG e

where B denotes the nonzero block of B, and S is the block diagonal matrix whose
k*h block S* corresponds to a discretized version of the Steklov-Poincaré operator of
subdomain : HZ2(QNOQ) — H 2(QNY), v— %‘#, where uy, is defined by :

—divagradug +Bur =0 inQy, upr=v onQNIN, ur=0 ondNo.

Clearly, the matrix S satisfies all the assumptions of §3 and it is thus possible to use
the algorithm described above. We then have to choose properly the matrix R and
therefore the preconditioner R. This will be the topic of the next section. Note finally
that the elimination procedure is not compulsory (see [13] for an algorithm avoiding
elimination).

5 PRECONDITIONERS

We first introduce two inexpensive preconditioners, which are not optimal as regards
the condition number estimates, but which lead to linear systems which can be
solved at an arithmetical cost proportional to their number of unknowns. Then we
discuss inner iterative methods for better preconditioners in terms of condition number

estimates.

5.1 Two inexpensive preconditioners

The first preconditioner will be introduced for the following symmetric elliptic p.d.e.
(2.1) where Q is a domain of RY (N = 2,3), and a ( resp. f3) are positive ( resp.
nonnegative) functions, for simplicity constant in each subdomain. The values of «
and A in Qf are denoted oy and B, and the jumps of @ and 3 across the interfaces
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can be arbitrarily large. Then following [9], we choose R as the block diagonal matrix
whose k" block is

RE = plN =20y (I* — P*) + dxhy B P*. (5.1)

Here dj, is the diameter of subdomain 2, (we assume that the aspect ratio of the
subdomains is bounded by a constant), I* is the identity, and P* is the matrix of
the operator which maps a function defined on 8Q to its mean value. We have the
following result

Proposition 5.1 The condition number w(R™'S) with respect to subspace Vp
satisfies
d
k(R7S) < Cmax =+ (5.2)
k hk
where the positive constant C does not depend on «, 3, hy and di.

Efficients algorithms can be designed for solving the preconditioning problem:
indeed, it is easily observed that R is a low rank perturbation of a diagonal matrix D
(R=D+ L, rank(L) = K). Therefore we split the matrix R into

R=D+£_=_< g BOT>+( [6 g). (5.3)

Since the rank of £ is exactly K, the preconditioning system will consist essentially
of solving twice the linear systems with D, and once a coarse problem of size K. In
two or three dimensions, the system with D can be solved by eliminating first the
unknown U. This leads to a linear system with matrix BT D~1B which can be solved
by a preconditioned iterative method where the preconditioner would be obtained
by performing mass lumping on BTD—'B. For a desired precision, the total cost of
solving the preconditioner problem is proportional to the number of unknowns.

Alternatively, in two dimensions a direct solver can also be proposed: we first reorder
the unknowns into two groups: the second group is made of the d.o.f. of U located at
the crosspoints of the domain decomposition and the first group contains the remaining
d.o.f. of U and the d.of. of A. With this ordering, the matrix D becomes

D. BT ¢
B, 0 B (5.4)
0 BT D,

where e stands for edges and ¢ for crosspoints. The idea is to eliminate first the
unknowns of U, and A, which yields a sparse system whose dimension is proportional
to the number of crosspoints and which can be solved by means of a direct Choleski
method. To eliminate the d.o.f. of U, and A, we group together the unknowns of U,
and A corresponding to same interfaces, and the submatrix

p. BT
B. 0
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becomes a block diagonal matrix (one block per interface) and the block related to
interface I'y; is denoted
ps o BT
0o D BT . (5.5)
Bkl Blk 0
e €

For solving the systems with such a matrix, the unknowns of U* U are eliminated.

This yields a system with the band matrix Blekl_lelT-i- Bi’“D”“‘lBékT, which can
be solved in a direct manner.

The second inexpensive preconditioner is introduced for the Laplace operator (
ag =1, B = 0) in two dimensions : we choose R as the block diagonal matrix whose
k** block is

Rk = gf(fk ~ P*) 4+ 5% (5.6)
k

where I* and P* have been introduced above and where ¥ is the matrix corresponding
to the Laplace-Beltrami operator $f = —h;Agq, :

d d
(Eﬁukh,vkh) = hk/ a—s—ukh ggvkhds, Vukh,vkh € Xp. (5.7)
ay,

The choice of this preconditioner can be explained as follows : the term 2&(I* — P¥)
approaches the Steklov-Poincaré operator for the lowest frequencies while the term
T* is used for the highest frequencies. The Steklov-Poincar’e operator is not so well
approached in the intermediate frequencies. Quantitatively, we have the following

result

Proposition 5.2 The condition number x(R™'S) with respect to subspace Vg

satisfies
d
K(R7IS) < Cmaxﬁ—’i. (5.8)
k hk

Thus the condition number depends only on the maximal number of mesh points in
one subdomain, and is much improved compared to the first preconditioner. Of course,
this will be paid by more difficulty in solving the related linear systems.

The procedure for solving the preconditioning linear system is very close to the
one discussed above for the first preconditioner: the matrix R is decomposed into
R =R+ L, where £ is a low rank matrix ( rank K) and

~ ( R BT -
r=( 3 %) (59)
and R is the block diagonal matrix whose k** block is
RE= ey s (5.10)
dy

Again the preconditioning system consists of solving twice a linear system with matrix
R and once a coarse problem of dimension K. For the problems with R, we eliminate
first the unknowns non located at crosspoints and we are led to solving a small system
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whose dimension is proportional to the number of crosspoints. The main difficulty is
to solve the systems with the blocks

Rkl 0 Ble
o R+ v, (5.11)
I : L

with self explanory notations. Here, eliminating first U and U would lead to a
linear system on A® with a dense matrix. The cost of solving this system would
be proportional to the square of the number of unknowns. Therefore, we prefer
instead solving directly the system, after having reordered carefully the unknowns.
The reordering procedure, fully described in [2], permits to solve the system at
an arithmetical cost proportional to the number of unknowns. Thus, here again,
the preconditioning system can be solved with the optimal arithmetical complexity.
However, in this case the programming effort is important, because reordering the
unknowns is needed. Alternatively, a very close preconditioner to the latter can be
designed ( see [1] ) when the lumped jump operator B described in remark 1 is used,
with a much easier practical implementation.

5.2  Inner iterative procedure for better preconditioners

The preconditioner will be introduced and analysed again for the Laplace operator in
2 dimensions. Let us choose

RF = (=M, (5.12)
where T* is either the matrix
2 -1 -1
-1 2 -1
-1 2 -1
-1 -1 2

for interior subdomains or a diagonal block of it otherwise. It is well known that the
matrices R* and S* are spectrally equivalent. Thus the corresponding preconditioner
‘R is also spectrally equivalent to S in the subspace of constraints. However solving
the systems with the above mentioned preconditioner is not easier than solving the
original system. Therefore, following [10], we are going to replace the above matrix
R with another matrix R, spectrally equivalent to R, but leading to much cheaper
implementation costs.
Let us introduce the matrix

Q:( A Ef)T), (5.13)

where Q is the block diagonal matrix whose k™ block is Q* = h,(I* — P*) if
2 is an internal subdomain and h,I* otherwise. Note that Q is exactly the first
preconditioner introduced in (5.1), for the special case of the Laplace operator.
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Figure 1 A smaller grid obtained by sparsening the initial one

Consider the eigenvalue problem : pQW = RW. As in §5.1. it can easily be proved
that the eigenvalues ;1 belong to segment [cq, ¢z maxi<p<k %{] with positive constants
c1 and ¢y independant of di, and hy. Therefore, both matrices @ and R are symmetric
and positive definite in subspace Vg and bounds on the spectrum of Q'R can be
computed by a Lanczos type method. Then it follows immediately from [19],[14] that
the Preconditioned Chebyshev iterative method in the subspace Vg can be applied
for solving system RX = Y. The Preconditioned Chebyshev iterative method can
be represented in a compact form by X* = [I — P,(Q71R)]R~1Y where P;(t) is the
minimal polynomial of degree s related to a segment containing the eigenvalues of
Q'R (see [19]). Finally a matrix % can be defined by

R=R[I - Pn(QR)] " (5.14)
with m = O(maxi<p<x 4/ %) We have the following result :

Lemma 5.3 Under the assumptions made, the matriz R gwen by (5.17) is spectrally
equivalent to matriz S, in the subspace of constraints Vg.

The crucial point in solving the preconditioning problem is the product by matrix
R, which can be achieved thanks to fast Fourier transforms.

An alternative choice of R* is proposed in [13]: let 74 be a finite difference gfid
such that the trace of 7y, on 8 coincides with that of Tis. We assume that 7¢y
has much less nodes that 7y, namely 0(%%) nodes. When %f =~ 2P, an example of

such a grid for a square is given on the figure 1. Let AF be the corresponding stiffness
matrix. It can be factorized with O(%:) arithmetical operations. Calling S* the related

Schur complement, we have that S* is spectrally equivalent to S* (see [18]) and that
the product of a vector by S* costs 0(7’%) operations. It is thus possible to choose

RF = §* instead of (5.12).
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