Parallel Implementation of Multidomain Fourier Algorithm
for 2-D and 3-D Navier-Stokes Equations!

0.1 Introduction

For long time integration of PDEs and resolving fine features of their solutions it is
preferable to use high order methods, in particular spectral methods. But the global
nature of spectral methods makes these methods difficult to parallelize with good
performance. In particular, it can destroy the possibility of achieving scalability. Most
numerical parallel algorithms based on spectral methods require global data transfers
(such as transpose of a global matrix) and global communication. For massively
parallel algorithm this may cause communication and synchronization bottlenecks.

A low communication parallel algorithms based on spectral methods were
developed in [IVAI]-[IVA3] for the solution of non-linear time-dependent PDEs.
The parallelization is achieved by domain decomposition. Elemental solutions in
subdomains are constructed using the Local Fourier Basis (LFB) method. The idea of
this method is to decompose a global problem into smooth local subproblems, using
a collection of overlapping bell functions. Then, the Fourier method is applied in each
local interval with spectral accuracy (without exhibiting the Gibbs phenomenon). It
is shown in [IVA1]-[IVA3] that the multidomain local Fourier (MDLF) method is
especially efficient for large problems using high resolutions in space. In this case,
the relative number of operations required to perform the projection is insignificant
in comparison with what is needed to execute the Fast Fourier Transform (FFT).
Moreover, this extra work is reduced as the size of the problem grows in each
domain[IVA4]. Therefore, for computation of large problems, which requires many
degrees of freedom, the MDLF method is almost as efficient as the conventional
Fourier method. An important advantage of this method, when compared to other
multidomain spectral techniques, is that it enables a great simplification of the
matching relations for the interface unknowns. For problems with constant coefficients
and in simple domains, the use of the Fourier basis enables to fulfill the matching of
each harmonic separately, and thus to eliminate the global coupling of the interface
unknowns. Since then, the method was extended to handle complex geometries [IVA5].
The decomposition strategy of the the MDLF method can easily be changed to
reflect different resolutions in each subdomain, which makes it valuable as an adaptive
algorithm.

In [IVA4] the MDLF method was applied to the parallel solution of the model
Navier-Stokes problem investigated previously in [T]. This model does not contain the
pressure term, therefore, the time discretization procedure results in the Helmholtz
equation to be solved in each time step. It was shown in {IVA4], that due to the
locality properties of Helmholtz operator, application of the MLDF method o such
problems is highly efficient. Matching of the solutions in subdomains requires only
local communications between neighboring processors. Hence, the algorithm is fully
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scalable. In [NS] a parallel algorithm, based on MDLF method for solution of the 2-D
Navier-Stokes equations, was presented.

In the present paper the algorithm [NS] is generalized for 3-D Navier-Stokes
equations and is applied to the parallel solution of the 2-D and 3-D Navier-Stokes
equations. The treatment and the solution of the global Poisson equation for the
pressure has the potential of degrading the performance and the speedup of the parallel
solution. We show that for elliptic equation of Poisson type the size of the required
global data transfer can essentially be reduced. The reason is that only the lowest
harmonics of the pressure are treated and matched globally. Therefore, most of the
commmunication that is required for parallelization of the Navier-Stokes equations is
mainly local between adjacent subdomains (processors). The 2-D and 3-D Navier-
Stokes equations are implemented on MIMD message-passing multiprocessor using
PVM software package[PVM] and it achieves an almost linear speedup.

0.2 Governing Equations and Numerical Schemes
We are interested in the parallel solution of the Navier-Stokes equations, which governs
the incompressible viscous flows with constant properties

%% = Re"'V?v — N(v) = VI + F (0.1)

VIl = VI + ¢, T(z + 27,y + 27,2 + 27) = [(z,y, 2), T' = (II',v), ¢ = const,

in the periodic domain € = [0,27)3. Here v(x,?) = (u, v, w) is the velocity subject to
the incompressibility constrain

V.ov=0 in Q, (0.2)

I=p+ %]v]2 is the total pressure (p is the hydrostatic pressure), F is the external
forcing and Re is Reynolds number. The nonlinear term is written in rotational form

NH@)=vx (Vxv). (0.3)

The numerical solution of the problem (0.1)-(0.3) with periodic boundary conditions
requires discretization in both time and space.

0.2.1 Duscretization in Time
The discretization in time is performed via a splitting algorithm investigated in [KIO]:
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From (0.6) it follows that Vv = 0. Therefore, Eq. (0.5) can be rewritten in the form

1
2+l vl
VIt = V9, (0.7)

This algorithm consists of an explicit advection step (0.4), a global pressure
adjustment for incompressibility (0.5), (0.7) and implicit viscous step (0.6).

0.2.2 Discretization in Space

The splitting algorithm in time results in two types of elliptic equations: the Helmholtz
equation

V2u — Mu = f(x), (0.8)

and the Poisson equation

Viu = g(x), (0.9)

that have to be solved repeatedly (for each time step). The parameter A in (0.8) is
related to the time-stepping increment At, A? = yyRe/At. We consider computational
domain Q = [0, 27]¢, where d = 2 or 3 decomposed into parallel strips or slabs (further
on called strips also) and the boundary conditions are periodic in all directions. We
discretize the local problems in subdomains on a uniform grid. Then, we construct the
local solutions using the multidomain local Fourier (MDLF) method of [IVA1]-[IVA3].

0.2.3 Solution of the Helmholtz Equation

After the application of the Fourier transform on Eq. (0.8) in the periodical directions
y and z we get the 1-D equation in the nth strip:

d2q()

o ¥a= ). (0.10)

In the 2-D case: 4(®) = ﬁ;c"), fo = f',gn), 32 = A2 4+ k2 ; in 3-D case: 4(™) =
Umz, f) = f,g:;), 22 =22 4 k2 + m2. Here k = —%l, ,%‘L and m = —%ﬂ,..‘..,%l
are harmonic numbers in y and z directions. According to the MDLF technique of
[IVA1]}-[IVA3] the solution of equation (0.10) in the whole domain .consists of two
main steps: Construction of the elemental particular solutions, matching step.

To estimate the gain of the local matching for the partial pressure harmonics in Fhe
3-D case we compare the performance of the parallel solution of the Poisson equation
{0.8) in two cases: complete global matching and local matching for partial pressure
harmonics. We take the forcing in (0.8) to be g(x) = coskz- elcosky)(coskz) The results
are presented in Table 0.1. Local matching for partial pressure harmonics produces
solution with order of accuracy of ¢ ~ 10~8 in comparison with complete solution that

utilizes global matching. We need the following notations:
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Notations:
N, size of square matrix of interface values of the lowest Fourier
coefficients in y and z directions (included mean value ) that
are globally matched
T3 executable time for the parallel algorithm where all the pressure
harmonics are matched globally
Ty communication time of the parallel algorithm where all the pressure
harmonics are matched globally
Ton executable time for the local matching of partial pressure harmonics
P communication time of the local matching of partial pressure harmonics

T
Sen = 'T_gg/_z speedup

Table 0.1 indicates that we achieve considerable savings in executable time by using
local matching with partial pressure harmonics while preserving the accuracy of the
solution (columns 6 and 11 in Table 0.1). This gain grows with the increase of the
machine size and the amount of transferred data. This is due to the fact that the
bottlenecks that are part of the complete global matching of pressure harmonics. We

Ny = N, =128 N, = N, = 256
Pl T 1 Ton | T | To | Son || Top [Ton | Ty | Ty | Sopt
4 17 54 41] 80| 15[ 73] 182 168] 289 [ 1.6
6| 19| 50| 65| 91| 1.8 75| 185 | 253 | 405 | 2.2
8] 20| 51| 89130 ] 2.6 74| 183 | 362|553 3
10 29[ 53121164 31| 75| 195|507 | 747 | 3.8

Table 0.1 Timing (in ticks) and speedup Syp = Ty/T, for parallel
algorithms for the Poisson equation: n = 48, Ny =n-P, N.=8, N, =8.

would like to emphasize the fact that even in the case when global coramunication is

required, a careful choice of the method may results in a lesser communication. Thus,
the overhead is not increased.

0.3 Computational Algorithm for 2-D and 3-D Navier-Stokes
Equations

In this section we present the algorithm that was used for solving 2-D and 3-D Navier-
Stokes equations using strip topology. Initially, we define the velocity Ug(x,t) and
the pressure Pj(x) distributions in space (see Sections 0.5). Then, we compute the
“forcing” F using Eq. (0.1). By using time marching algorithm (Egs. (0.4) - (0.6))
we compute the velocity evolution v(x,t) under the “forcing” F where the initial
condition is Uga(x,t). It is clear, that in this case deviation of the computed solution
v(x,t) from Ug(x,t) in each time step have to be small and depends on the time
stepping increment At and the number of collocation points (for example, in our
3-D computations the maximum relative error is ¢ ~ 1079 for double precision at
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At = 1073 where the number of collocation points N = 128, N, = 32, N, = 32, see
Sec. 0.5).
Our algorithm consists of eight main steps (for detailed description of the algorithm
see [AVIV] ):
Step 1: Initialization
Step 2: Explicit advection step: beginning of time marching
Step 3: Calculation of the RHS of the Poisson equation
Step 4: Solution of the Poisson equation
Step 5: Matching of I3%! and OII3*+! /82 in the whole domain (partial global match-
ing)
Step 6: Computation of the velocity v
Step 7: Implicit viscous step
Step 8: Matching of the particular solutions VI',""I:Completion of the time step

After each step (from 2-6) we have to exchange data between processors. But only
two data exchanges, before and after step 5, have some globality of data transfer: in
step 5, we match particular solutions for the pressure II and its derivative 911 /9z in the
whole domain. In this step only the lowest few harmonics have to be matched globally.
The other four data exchanges are purely local. According to MDLF methodology the
data transfer takes place between neighboring subdomains (processors).

0.4 Implementation

The proposed algorithms are appropriate for scalable distributed memory MIMD
multiprocessors. Currently, the code is ported onto a distributed memory farm of
DEC 3000 Model 400/400S AXP system called, from now on, as Alphe Farm. Each
node in the farm is a high-performance desktop system that uses Digital DECchip
21064 RISC microprocessor running at 133.33 MHaz. It is based on Digital Alpha AXP
architecture and has ~75MB of memory space available to the user. This Alphe Farm
consists of 10 computers connected through FDDI (Fiber Distributed Data Interface).
Effective data and messages transfer through this interface is realized via Giga Switch,
with averaged data transfer rate 3-4 MB/s.

To implement the above algorithms we used the Parallel Virtual Machine
(PVM)[PVM)] software package. Implementation results for Navier-Stokes equations -
on the Alpha Farm using PVM are presented in the next section.

0.5 Performance analysis

In this section we present the performance analysis of our algorithm for the solution
of Navier-Stokes equations (Eq. (0.1)). The algorithm was tested according to the
methodology described in Sec. 0.3. We identify the evolution of the solution under
external force that has complicated behaviour in space and time. This algorithm can
be easily adapted to the solution of other real problems of turbulence. For example,
turbulence decay [BC], long time evolution of instable exact solution of Navier-Stokes
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equation [BMO], etc. Elimination of the “forcing” term is the only thing that has to
be done for this adaption.

After the completion of the extension and folding of the MDLF method [IVA1, IVA2]
we apply the Fourier transform to even functions in the subdomains. Therefore, we can
use the discrete cosine transform (DCT) instead of the FFT (as was done in [IVA4]).
It saves 40-50% of the overall time needed for the application of the Fourier transform.

Detailed performance analysis of MDLF algorithm for 2-D and 3-D Navier- Stokes
equations are presented in [AVIV]. Here we dwell briefly on the results for 3-D Navier-
Stokes equations.

Notations:
Ng, Ny, N, number of collocation pointsin x, y and z directions
P number of processors
n=Nz/P number of points in a processor in &
Ne number of points on an overlapped interval ¢
N =2(n+2N,) the size of the local FFT
T: best serial time
Tper parallel time in each processor using the Discrete Cosine
Transform (DCT)
S =T:/Tpecr speedup
T communication time
E=58/P, 0<E,<1 efficiency

Parallel timing

The parallel measurements for the 3-D Navier-Stokes equations are presented in Tables
0.2.

Scalability: From Table 0.2 we see that the 3-D algorithm is highly
scalable: when we increase the number of processors and the problem
size in each processor remains the same (i.e. the problem size increases
~ P), the computation time of the whole problem stays the same
(I'per in columns 2 and 10 in Table 0.2. This is due to the fact that
~90% of the communication between subdomains is local.

Communication time: Our results indicate that the total computation
time, Tpcr, strongly depends on the data transfer rate between
processors. Actually, from Table 0.2(columns 3 and 11) we see that
the contribution of the communication time 7, to Tper varies from
30% to 50% depending upon the problem size. In our particular Alpha
Farm configuration the average internal data transfer rate V; is about
3 MB/s. It should be mentioned that, currently, the data transfer rate
for internal network can be ten times higher than what is available by
the Giga Switch of our Alpha Farm. So we extrapolate our results by
taking V. = 9 MB/s. The results of the extrapolation are presented in
Table 0.2 (under V, = 9 MB/s) and in the Figs. 0.1 From this tables
we can see that by increasing V, to 9 MB/s results in 10-3 0% increase
in the speedup (S) and efficiency (E).
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n=488 N = 1024
P V. =3 MB/s V. = 9 MB/s
Tchchi S' E TDCTiTc‘ Sl E
4 18 [ 13§ 0.93 | 0.23 9 4({1.9} 045
6 16 | 11 | 1.63 | 0.27 8| 4133|055
8 181 15 21 0.25 81 545056
10 17112 271 0.27 91 4151051
n =2024 N =4096
4 3414 231058 25| 5(3.110.79
6 39 |15} 3.1 0.52 29| 5142 07
8 37| 15| 4.5] 0.56 27| 5]6.1| 077
10 3311 ) 6.4 0.64 251 3184084
n =1000 N = 2048
P V. =3 MB/s V. =9 MB/s
Tpor l Te , S I E | Tper l T I S l E
4 2211 1.7 042 12 5 31 0.77
6 22 | 15126 | 043 121 5] 48] 08
8 20 1313.91]0.49 121 4|65 081
10 20113149 0.5 12 4|82 0.82
n =4072 N = 8192
4 67 | 14} 2.5 0.63 581 b1 29 0.72
6 67 |1 20| 3.8 0.64 54| 7148 0.79
8 67120 5.2 (0.6 54 [ 7165 0.81
10 65| 15| 6.8 ] 0.68 bb| 5 8] 08

Table 0.2 3-D timing (in ticks), speedup and efficiency for 10 iterations:
N,=8, N;,=8, N =n-P, N=2(n+2N,), Ne =16

Speedup: From Tables 0.2 and Figs. 0.1 we can see that the achieved
speedup grows almost linearly with the increase of the number
of processors P and this is done while the problem size in each
processor stays invariant. This linear growth is explained by the fact
that algorithm is highly scalable. When the number of processors
increases and, therefore, the size of the problem also increases, the
parallel computation time Tpcr stays almost the same, but the serial
computation time T increases.

Efficiency: The efficiency of the algorithm is high and increases with the
increase of the problem size. Thus, it varies from 0.3 to 0.7-0.9 (Table
0.2).

Local matching of partial pressure harmonics: In [AVIV] we had a
detailed explanation that for 2-D and 3-D Poisson equation only
few (lowest) harmonics of the pressure in the directions along the
strips have to be matched globally. The number of globally matched

439
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) N
7 8 10 11 12
Number of Processors

Figure 0.1 Achieved speedup when 3-D domain is decomposed into parallel
strips for Ny = 8, N, =8.

harmonics depends on the required accuracy of the solution. Here
we verify this observation on highly nonlinear solution with complex
dynamics in space and time. To investigate the advantage of using
local matching of partial pressure harmonics we take another extreme
case, in comparison with the results in Tables 0.2. For this extreme
case, we take the maximum number of harmonics (the only constraint
is the memory size) that are being matched along strips. The results
of these computations are presented in Table 0.3. The notations are
the same as in Table 0.1. All the results reflect local matching of
partial pressure harmonics at distinct N, produce the same order
of accuracy (¢ ~ 10~%) as was achieved by using complete global
matching of pressure harmonics. From this table we see that we need
only the three lowest harmonics and mean value of the pressure to be
matched globally. This results in ~20% saving in the executable time
in comparison with the complete (full version) of the global algorithm.
We get almost the same savings when the number of globally matched
harmonics is increased (row 2 at N, = 32 at Table 0.3). This is due
to the fact that a packet size in the Alpha Farm is 16KB. Therefore,
the transfer time of 4 and 32 harmonics is almost the same. From
Table 0.3 we see that algorithm with local matching of partial pressure
harmonics is scalable. Execution time of complete global (full version)
algorithm increases with the number of processors. Global exchange
of data in global algorithms can degrade the performance. Therefore,
the speedup Sy increases with machine size (see Table 0.3).

Thus, we show that local matching of partial pressure harmonics leads

to a reduction in executable time while preserving the accuracy of the
solution
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l P I Ny rT;/I LTg/’ WTJ [ Iy l St '
10 4| 600 | 681 { 694 | 792 | 1.16
41 32| 568 | 660 || 621 | 726 1.1
6] 321 546 | 637 Il 632 726 | 1.14
8| 32| 559 | 652 || 680 | 762 | 1.17
10 32 ] 5621 651 | 6941 792 | 1.21

Table 0.3 Timing (in ticks) and speedup S,/ = T, /T, for parallel
algorithms for ten iterations; n =8, Ny=n.-P, Ny= N, =128, N.=4.

Stability and Numerical Accuracy : Our implementation is stable.
For example for parameters P = 3, N, = 128, Ny, = 32, N, =
32, N. = 16 and the time step At = 10~2 the numerical error
€ = MaXo<g,y,z<27 |V — Vez| ~ 107° during 7500 time units.
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