Additive Schwarz Methods without
Subdomain Overlap and with New
Coarse Spaces
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1 Introduction

This chapter develops two additive Schwarz methods with new coarse spaces. The
methods are designed for elliptic problems in 2 and 3 dimensions with discontinuous
coefficients. The methods use no explicit overlap of the subdomains, subdomain
interaction is via the coarse space. The first method has a rate of convergence
proportional to (H/h)'/? when combined with a suitable Krylov space iteration. This
rate is independent of discontinuities in the coefficients of the equation. The method
has good parallelization properties and does not require a coarse grid triangulation,
that is, one is free to use arbitrary, irregular subdomains. The second method uses a
diagonal scaling in addition to the standard coarse space. This method is not as robust
and flexible as the first method. A suitable model problem that we will consider has

the variational form:
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Find uv* € V(§2) such that
N
> / piVu* - Vo dz = / fode YveV(), (1)
iy oS Q

in an appropriate Sobolev space V(). Here p; are positive constants and Q = Ul Q.
We are interested in the discontinuous coefficient case, i.e., we have (possibly large)
jumps in the values of p; across subdomain boundaries.

This problem is quite common in practice where, for example, the coefficients
p; represent physical (e.g., material) properties that change across the domain of
interest. An example of this is petroleum reservoir simulation [BK95], where the
reservoir consists of inhomogeneous rock where the permeability can change by orders
of magnitude across relatively small sections. The freedom to make the subdomain
boundaries follow the material discontinuities may be quite important in this and
similar applications.

The problem has attracted much attention, [Sko92] and [BS92| developed parallel
algorithms showing experimentally that the Additive Schwarz algorithm converged
very satisfactorily when using small or minimal overlap between the subdomains. The
paper [BX91] contains estimates for the weighted L2-projection indicating a lack of
stability and in [Xu91] there are counter examples showing that these estimates are
sharp. The report [DSW94] discusses many domain decomposition algorithms for this
problem in 3 dimensions and characterizes a class of distributions of the coeflicients p;
for which the L?-projection is stable. This class, called a quasi-monotone distribution.
requires a monotone path from all subdomains to the subdomain baving the largest
coefficient, traversing (through the faces) the subdomains that have a common node
4, see Figure 1. For more references the reader should consult the bibliographies given
in the above mentioned papers.

0.1 10 1000

|
0.1
1000 0.001 , 10 0.001 ///[ ,

L

2000 i 2000

a
I J
02 0.002 i// L
P
g

20 0.002

A) B

Figure 1 1In A) the distribution is not quasi-monotone as there is no monotone
path from 1000 to 2000. In B) we show a quasi-monotone distribution.

4 I.f the?e is. a path through edges only, we have a weak quasi-monotone distribution. This
situation improves our estimates, but is not discussed further here.
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2 Definition of a Discrete Model Problem

Let Q be a polyhedral region in R, d = 2,3. We consider two triangulations of €2, a
coarse and a fine, with elements £2; and e; each having diameters H; and h; respectively.
We assume that the fine triangulation is a refinement of the coarse subdivision. We
further require a constant «;, independent of the triangulation, such that

hi= inf h;>aq sup h; 2
P degnony Y Zj:e,-naszi 7 @)

for each substructure §;. This defines 4;, the diameter of the smallest element touching
the boundary in substructure €); and requires the substructure boundary elements to
be quasi-uniform. Note that elements in the interior of a substructure are not subject
to this restriction, but we require all elements of the fine triangulation to be shape
regular. We note that our assumptions can be relaxed to only require shape regularity
near subdomain boundaries, at the expense of a more technical exposition. In order
to keep the notation simple the reader should note that we often use the quantity h;
under the (limited) quasi-uniform assumption stated in (2).

‘We have no such assumption on the coarse triangulation, and note that our results
are valid for an irregular coarse partitioning into subdomains as long as each element
Q; with diameter H; is a union of the fine triangles e;. In order to keep the presentation
simple we will only discuss the case where V" is a finite element space of piecewise
linear, continuous functions defined on the fine triangulation and vanishing on 05}, the
boundary of Q. Our discrete problem is of the form:

Find u € V*(Q) such that

a{u,v) = f(v) Vve Vh(Q), (3)

where

a(u,v) = é/l piVu - Vv dz, fv)= /Q fvdz (4)

and p; are positive constants.

3 The Additive Average Method

We decompose the space V" into
VE=Vo+Vi+--+Vn,

where, for i = 1,---,N, V; = H}(Q;) N V" and zero outside of ;. The space Vj,
which we call the coarse space is defined as the range of an interpolation-like operator
I, Vo =Range(Il4). For u € V* on ; we define Tyu as follows:

_ u(x), =€ 0y
Tau= { g, &€ Qp, (%)

where 9€;;, and Q;;, denote the nodal points of 99; and §; respectively. Let n; denote
the number of nodes on 95);. For any function u € V* we define the quantity i, for



144 Additive Schwarz Methods

each 9€2; by
1

a=— >, u), (6)
Y redQun
the average of the nodal values of u that are on the boundary of substructure €.
Due to this construction and in order to distinguish this method from other additive
Schwarz methods, we will denote it the Additive Average method.
We now state a lemma about the properties of our interpolation-like operator I

which will be useful for the analysis of the proposed algorithm.

Lemma 1. For any u € V™

H;
a(lau, Iau) = g piIIAUJ?p(Qi) <C E pi?lui?ﬂ(ﬂi) (7)
and
2
E p1”u - IAu”LQ(Qi) < Ozpiﬂflu,zl(gi): (8)

where C is a constant independent of H; and h; and of the jumps in p;. Here h; is
defined in (2).

Proof: First, consider the interpolation error |ju— 1T Au”%ﬁ(m)' We have in d
dimensjons (d = 2, 3),

I = Latlliany < 2{lliney + | (Lawas)
< C{llullia, + H @2} 9)

We can estimate 4? by
_ - 2
@ < CHil dHuHLz(E)Qi)a
since
1 1
—2
2= LT sl 3 ey (10)
¢ 2€8Us * 2€8Q
and 1/n; < C(h;/H;)** because of assumption (2).

Using this, we obtain an intermediate inequality which is needed in the proof of
both (7) and (8),

2
lle = Laullizi,) < C {”uﬂiz(ni) + Hz’““”?:z(aszi)}- (11)
We now proceed to prove (7).
|IAU[251(Qi) = |[lqu-— ﬂilfm(gi)

< C > AT Lau— ﬂilﬁy(ej)
ejCQi »

< ChETE Y (w(z) - w)?

w€0Q;,

< ORI Y Wi(a),

€Iy
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where we have used the inverse inequality and the properties of I4. The last inequality
follows from the observation that,

Y. @) -wm)?= Y (@) -mulz) = Y (w(z) - nad) < Y w(a).

€O, TEIQ;n BEI €O in
From this we conclude that
2 C. 2
’IAulHl(Qi) bS h—i”U”LZ(aQi)- (12)
Using the trace inequality
2 2 2
Il 2o < € {lulin @ + el } (13)

for a reference element Q, of unit diameter, see for example Theorem 1.5.1.10 in [Gri85],
we can write:

2 — 2
[Laulfae,y < Chi'llullzzcon,
< Ch ' HE Y|l 22 00
= i i U Lzea0)
- — 2
< O  full oy + lelagey }
< cntgi-t) L e 1 2 14)
= i i H;{_g lulm(ai) + Eg”“”wmi) (

~|U Y]
hi HY(9Q;)

where we have used Poincare’s inequality on the second term in the last step.
Summation over all elements §2; proves (7), the first part of the lemma.

In order to prove the second part of Lemma, 1, we apply the result from (14) to the
second term of (11) and Poincare’s inequality oun the first term concluding that

lle — Laul|72(,) < CHF lulf o,)-

Summation over all subdomains €; completes the proof of Lemma 1.
Introduce bilinear forms b;(u,v) on V; x V; of the form

b;(u,v) =alu,v) t=1,--- N
and the bilinear form on the coarse space

bo(u,v) = szhd 23 (ulm) — ) (v(x) — B). (15)

(12719998

Note that for v = ¢, a basis function associated with a nodal point = € 89;, we have

Z (u(z) — a:)(¢(z) — ) = Z (u(z) — @i)o(z),

TEIQn TEBh
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since B

TEON;ip
Let

T=T+Ty+---+Tn, (16)
where

bi(Tiu,v) = a{u,v) VYveV;, i=0,---,N.
The discrete problem (3) can be replaced by the equation

Tu=y,
where g = Zfio gi, and g; = T;u is the solution of
bi(gi,v) = flv) YwveV.

We refer the reader to [SBG95] for a detailed explanation of this reformulation.
We now state the main result of this paper:

Theorem 1 The operator T is self-adjoint positive definite in V" with the scalar
product a{u,v) and for any u € V?

Y6 talu, u) < a(Tu,u) < yia(u,u),

where o and 1 are positive constants independent of h; and H; and of the jumps of
pi. Here § = max; H;/h; and h; is defined in (2).

Proof: Using the general framework of Additive Schwarz methods (Chapter 5 in the
book [SBG95]), we need to check three key assumptions.

Assumption 1 Let Cp be the minimum constant such that for all u € V" there exists
a representation u = ZZ u;y Ui € Vi, with

Z b (uiyu;) < Cla(u,u).

Let up = I4u and w = u —ug. Note that w vanishes on each 8;. In light of this let us
define u; € V; by the nodal values of w at all nodal points z € ), and zero otherwise.

Note that
N
U = Z Uj.
i=0

We then have

N
> bi(ui, ui)
i=1

N

2
E Pilu - u()[Hl(Qi)
i=1

a{u — up, u — ug)
2a(u, u) + 2a(ug, ug).

1l

IA



P. E. Bjorstad et al. 147

We now apply Lemma 1 to the second term above and obtain

N
Z bi(wi, ui) < Céalu, u). (17)

i=1
It remains to handle the case i = 0, that is, ug. We use the same inequalities as in the
proof of the first part of Lemma 1 to estimate bg(ug,uo),

bo(uo, uo) = 3 pihf™> 3 (u(e) ~m) O3 Fllullan,y  (19)
i rEOn i t

The inequality in (14) provides a bound on ||uH2L2 (094
;
b()(’ll;o,'u,[)) S CsziL_(ulip(Ql) S Céa(u, u).

Combining (17) and the previous inequality gives a final bound on the energy of our

decomposition of u
N

Z bi(ui, ui) < Céalu,u),
=0

which verifies Assumption 1.

Assumption 2 Define 0 < &;; < 1 to be the minimal values that satisfy
la(ui,uy)| < Eislalus, w)]?*[aluj, u)]Y?  Yu; € Vi, wj € Vj, 4,j=1,...,N.
Define p(€) to be the spectral radius of € = {&;;}. Note that we do not include the
subspace V.
In our case p(£) = 1 since &; = 1 and &;; = 0 when ¢ # j.
Assumption 3 Let w > 0 be the minimum constant such that

af{u,v) < wb;{u,u) YueV;, i=0,---,N.

First, for i = 1,2, ..., N, we can take w = 1 since b;{u,v) = a(u, v). To handle the
case i = 0 we use the inverse inequality,

N
alug,ug) = ZP:‘I“OI?‘II(QN
=1
}\T
2
= Zpi|uo*‘uz’lf11(s2,—)
i=1

N
< S ph? Y (uofe) - )’

i=1 €00,
= Cbo(uo, uo),
which shows that w can be taken equal to C.
Note that in the case when by(u,v) is the exact bilinear form, that is, if bo(u,v) =
a(u,v) then w = 1 and we have v, = 2 in the upper bound of Theorem 1.
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4 An Additive Diagonal Scaling Method

This method is a modification of the method in the previous section. We decompose our
domain into non-overlapping subdomains as before. We use the classical coarse space,
i.e., piecewise linear elements defined on the substructures, but complement this by
yet another decomposition derived from solving a diagonal problem along all interior
interfaces. That is, we define a local problem for each node on the interior interfaces
(corresponding to a local subdomain equal to the support of the nodal basis function).
This is just a special diagonal scaling, hence the name of the method. For a quasi-
monotone distribution of the p; the estimate of the resulting condition number for the
preconditioned system is of the same order as for the method in Section 3 while in the
general (non quasi-monotone) case it is worse by a factor H/h in 3 dimensions. Our
theory for this method requires the triangulation of each substructure Q; to be quasi-
uniform with parameter 2;. We also note that the method requires the substructures
to form a regular decomposition, hence it is potentially less versatile.

We proceed to describe and analyze this method using the same notation and
framework as before. The decomposition of the space V" is of the form

V=V i+ Vo+Vi+... 4+ V.

Here V;, for i =1,..., N, are the same as in Section 3. The coarse space Vp = V&, is
a space of piecewise linear functions on the coarse triangulation which vanish on 90
(we assume that the coarse triangulation with triangular elements is shape regular).
The space V_; is called a diagonal space and is the restriction of V to I" = U;08;.
Functions in this space vanish at all nodal points outside T.

The bilinear form b;(u,v) : V; x V; = R, for ¢ == 0,1,..., N, is given by

b;(u,v) = a(u,v) u,v €V,
while for ¢ = —1
N
b_i(u,v) = Zpihf_z Z u(z)v(z). (19)
=1 TEO;p

The operators T3 : Vi — V;, ¢ = ~1,0,..., N, are defined by the bilinear forms
above and

T=T_1+Ty+ -+ Tx.

Theorem 2 The operator T is self-adjoint positive definite in V* with the scalar
product a(u,v) and for any v € VP

Y26 a(u, u) < a{Tu,u) < vaa(u, u),

where

L Qc R*d=2,3 when p; is quasi — monotone

— . H; H; . .
§ = max; T log 75 QcC R? when p; is not quasi — monotone

H; . .
G Q C R?® when p; is not quasi — monotone,

and v2 and v3 are positive constants independent of hi and H; and of the jumps of p;-
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Proof:
We need to check the same three assumptions as in Section 3.
Assumption 1:
Let ug = ’;Iu be the Ls- projection with weights p; from V" on Vg = V¥ that is,

N N

Zpi(uO,’L})Lz(Qi) = Zpi(u, 'U)LZ(Qi) Yo € VH.

i=1 i=1

It is known that
N N
2

Zpillu - UOH%’:’(Q,-) < Czpiﬂﬂulﬂl(m)v (20)
i=1 i=1

in the case when p; has a quasi-monotone distribution, see [DSW94], while

Czi\f_—l szz2 log %iulzl(gn, QC R?

(21)
szj\il Piﬂf%lulél(ﬂi), QCR3,

N
2
> pillu = uolZaq, <
=1
in the general case, see [BX91] and [Xu91].
Let w = u — ug and on each §2; we define
w = wy +wpg,

where wy(z) = w for all z € ;3 and zero on J€);. Note that wg € V_;. Let u; = wy

on ; and zero outside of ;, fori =1,2,..., N, and u_; = wp. We see immediately

that U = Z?;»_l Ug.
Again using (14) we obtain,

RN W@ < ChiMu- uOH?ﬂ(aQi) (22)

r€aQ;n
H; _ 2
< C# {lu - Uo@{l(ﬂi) + H; ?|ju - UOHLz(ﬂi)} .
(3

We now sum over substructures applying (20) or (21) (depending on the distribution
of the p;) to the last term. The projection ug = Q% is Ly and H' stable in the case
of quasi-monotone coeflicients p;, otherwise the extra factor log(H;/h;) or H;/h; from
(21) appears. Hence, with & defined in Theorem 2,

b_i(u_1,u_1) < Céa(u,u). (23)
Using the same arguments we prove that

bo(uo,up) < C6Y%a(u,u). (24)
We now consider the estimates for ¢ =1,..., N. We have

bi(u,',ui) = bi('wj,w_y) S Zbi(w,w) + 264,(11]]3,’11)3).
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By using the inverse inequality and (22) we estimate the last term as follows:

—9 p H’ 2
bilwp,wp) < CH2 S pilu— o) (@) < Cpigtllu = ol
€ ‘

Hence,
N

Zbi(uhui) < C(6*%a(u,u) + a(wp,wg)) < Céalu,u). (25)
i=1

Adding (23), (24), and (25) we obtain

N
3 bilui,u) < Cbalu,w),

i=—1

which verifies Assumption 1.
Assumption 2: )

Note that we can take V_; and Vi as the coarse spaces. In this case p(€) =1 as in
Section 3. This slightly modifies the standard theory regarding Assumption 3, as we
get 2w instead of w, see [SBG95] for details.

Assumption 3:

This assumption is verified by noting that we have w =1 for ¢ = 0,1,... N, while
w < C for the case i = —1. In this case we use the same arguments as in the proof of
Theorem 1.

5 Implementation

In this section we briefly discuss implementation of the Additive Average method, in
particular the issues relevant for a parallel implementation.
The subdomain solution can proceed completely in parallel, consider therefore the

coarse problem,
A Au u 0
142 ad @ — & 6
(2 ) Cn)-(0) @

We note that one extra unknown per subdomain, corresponding to the average values
ii; from (6), has been introduced in the vector u,. The vector wu; has one component
for each node on all subdomain boundaries. The subscripts @ and b denote average
and boundary respectively. The linear system has a very special structure that can
be exploited in the solution algorithm. First, from (15) we note that each block in
the coarse matrix will contain a diagonal scaling of the form IAI'I»"_Z pi. The block A,
is diagonal with entries n; (ignoring the scaling), the number of nodes belonging to
each substructure boundary. Similarly, the block A, contains the nonzero entry, -1.
in such a way that the first block equation just expresses the relation (6) between
average and boundary values. The block Ay is also diagonal and its values correspond
to the number of subdomains that share a given node on the substructure boundaries.

Additive algorithms normally proceed by restricting the current vector to the coarse
space, perform a coarse space solution and interpolate this solution back to the fine
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grid. In our case the restriction operator is implemented as follows. First, the values
of all interior nodes in a substructure are added and the result is stored in the vector
va- Next, we compute the right hand side vector v, according to the formula

Vp 1= v — AZ,,A;l‘va. (27)

This computation is the transpose of the interpolation-like operator defined in (5).
We solve the coarse matrix problem (26) by first forming the Schur complement

S = A, — AuA; T AT,

Due to the special structure of the blocks we can explicitly compute S quite easily
or multiply § with a vector in an inner iterative procedure. We next solve the Schur

complement system
Sug, = —AabAb_l'ub

and then compute the values of the internal boundary nodes u; by
up = Ay (vp — AL u,).

The resulting values u, and u; are then added to the solutions from the subdomains
in the standard additive fashion. This outline shows how the special structure of our
coarse problem results in an efficient implementation and an overall algorithm very
suitable for parallel computation.

Table 1 Computational complexity of the preconditioning step in the Additive
Average method compared with the Additive Schwarz method with minimal

overlap
2-dimensions 3-dimensions

Task Average Additive Average Additive
Subdomain (size) (n—1)2 (n+1)? (n—1)3 (n+1)3
Coarse problem (size) m? (m —1)? m> (m—1)3
Transfers (flops) 2n —1)2+20n  34(n+1)? | 2(n—1)2+30n% 126(n +1)°
Communication (words) 2 8(n+1) 2 12(n +1)?
Communication (startups) 2 10 2 14

6 Complexity

We compare the complexity of the preconditioning step in one iteration of a Krylov
subspace method when using the classical Additive Schwarz method and our new
Additive Average method. We consider only Additive Schwarz with minimal overlap,
that is, each subdomain extends a distance h into its neighbor making the total overlap
area have width 2h. We give the required number of operations per subdomain in a
way which can be implemented on a parallel machine where each subdomain is mapped
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to a (possibly virtual) processor. Additionally, a full Krylov step requires some vector
operations and a residual calculation (a distributed matrix vector product), but this
has the same cost in the two methods.

For simplicity, we consider the case where we have m?® subdomains each having
n® rectangular grid blocks in d dimensions (d = 2,3). This means that we have
(n — 1)% interior nodal points in each subdomain. We ignore the (setup) cost of
forming the Schur complement described in the previous section. Table 1 shows that
each subdomain problem is slightly smaller since we have no overlap in the new
method, while the coarse problem has dimension m?, an increase from (m — 1)¢ for
the Additive Schwarz method. One should also note that each subdomain problem
in the new methods have a constant coefficient p;, while in the Additive Schwarz
method there are jumps in the coefficients near the subdomain boundaries because
of the overlap. This may make the subdomain problems easier to solve with our new
approach. The two coarse problems have similar nonzero structure. A potentially more
significant difference can be seen in the reduced cost of performing the interpolation
and restriction (called ‘transfer’ in Table 1) as well as the reduced communication
requirement. The term 2(n — 1)? reflects the need to add all interior unknown values
and later add the computed average value to all interior nodes, altogether two additions
per nodal point. The term 20n estimates the work along the boundary of each
subdomain according to the equations in the previous section and similarly 30n? in 3
dimensions. The reduced communication reflects the fact that only one average value
must be communicated (both ways) between the coarse solver and each subdomain.
The Additive Schwarz algorithm has two phases of communication of similar size;
after the subdomain solution and in the residual calculation. In the Additive Average
method the first phase is very small and a full iteration of a parallel code will therefore
have both the number of messages and the size of the messages reduced by almost 50
percent. We will describe actual parallel performance in a forthcoming report.

7 Numerical Results

We have carried out numerical experiments comparing the new Additive Average
method and the Additive Diagonal Scaling method with the standard Additive
Schwarz method. In all tests we consider both a quasi-monotone distribution and
a distribution which is not quasi-monotone. The domain and the distributions are
derived from Figure 1 by translation of the upper half in two dimensions, while the
full 3-dimensional piece is translated in order to build the 3-dimensional examples.
That is, the value of p is constant in each subdomain. The algorithms have been
implemented as described, for convenience we use an (accurate) iterative solver for
subdomain and coarse grid problems. We further used the constant 1.7 instead of
k%2 in (15) and (19) when d = 2 since this value produced slightly better results.
First consider Table 2. We compare the two distributions and a reference case
where p; = 1 in two dimensions. Note the distinct jump in the condition number
for the Additive Diagonal Scaling method in the non quasi-monotone case, while
the Additive Average method shows no such dependence. We note that the Additive
Schwarz method works well for all cases, with a very low condition number for the
quasi-monotone case considered in this example. The factor /h changes by a factor 2
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in the two parts of the table. We observe that both the Additive Average method and
the Additive Diagonal Scaling method reflect this while the Additive Schwarz method
only displays a clear H/h dependence in the non quasi-monotone case.

Table 2 Comparison of the methods in 2 dimensions. The number of iterations

required to reduce the residual by 10™° and a condition number estimate is listed.

4 x 4 Subdomains, 4 x 4 Blocks | 8 x 8 Subdomains, 8 x 8 Blocks
Method Average | Diagonal | Additive | Average | Diagonal | Additive
Overlap 0 0 2 0 0 2

p=1 22 (11.2) | 17 (6.41) | 15 (5.34) | 34 (25.4) | 27 (13.4) | 18 (7.64)
g-mon. 25 (11.6) | 19 (6.71) | 16 (4.68) | 37 (25.8) | 29 (13.7) | 15 (4.64)
Not g-mon. | 24 (11.7) | 28 (18.0) | 16 (5.11) | 42 (25.7) | 58 (50.8) | 21 (9.88)

Table 3 Comparison of the methods in 3 dimensions. The number of iterations
required to reduce the residual by 107¢ and a condition number estimate is listed.

4% Subdomains, 4% Blocks 8% Subdomains, 8% Blocks
Method Average | Diagonal | Additive | Average | Diagonal | Additive
Overlap 0 0 2 0 0 2

p=1 19 (7.95) | 16 (5.47) | 19 (10.4) | 32 (21.3) | 27 (13.5) | 26 (18.7)
g-mon. | 23 (8.46) | 20 (6.29) | 21 (9.13) | 37 (21.6) | 33 (15.1) | 24 (11.8)
Not g-mon. | 23 (8.47) | 34 (53.2) | 23 (12.8) | 39 (21.9) | 134 (351) | 44 (51.9)

Table 3 contains a similar comparison in the 3 dimensional case. We observe
qualitatively the same effects. The condition number estimates grow somewhat faster
than the factor of two change in H/h, but the reader should note that the problem
changes in both Tables 2 and 3, that is, the number of coefficient jumps corresponds
to the number of subdomains.

The substantial increase in the condition number from a quasi-monotone case to
a non quasi-monotone distribution is not always followed by a similar increase in
computational work. As an example, using the Additive Diagonal Scaling method
with 4% subdomains and 8% blocks per subdomain, the condition number changes
from 52.9 to 237, while the required number of iterations only increases from 53 to
60. If we exclude the two smallest eigenvalues and compute the resulting ‘effective
condition numbers’, we get 32.3 and 38.0 respectively, thus explaining the small change
in iteration count.

In the non quasi-monotone case we note that the Additive Schwarz method has a
factor 4 increase in its condition number (when H/h changes by a factor 2), while it
performs very well in the other cases. A standard estimate for the required number
of iterations thus predicts that the computational effort may increase by as much as
a factor of two which is indeed the case here. The Tables show that the particular
distribution of coefficients may have a significant influence on the actual rate of
convergence of two of the algorithms and this effect is in agreement with the theoretical

predictions.
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\ 2-Dim. 3-Dim.
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Figure 2 The Additive Diagonal Scaling method in 2 and 3 dimensions. The
condition number of the iteration operator is plotted as a function of the ratio
H/h. The least square fitted lines have slopes as indicated on the plots.

Figures 2 and 3 study the H/h behavior of the methods in more detail and compare
this with the Additive Schwarz method in Figure 4. All computations are based
on a domain subdivided into 4 x 4 subdomains in 2 dimensions and similarly into
4 x 4 x 4 subdomains in 3 dimensions. We then change the ratio H/h by decreasing
h. The log-log plots enable us to get an estimate for the slope 3 assuming that the
condition number behaves like (H/h)”. In Figure 2 we consider the Additive Diagonal
Scaling method. The bottom part of the figure displays the quasi-monotone case and
we observe a perfect slope of 1.0 in 2 dimensions, while the slope is near 1.2 in 3
dimensions. Both the actual condition numbers (crosses) and a line corresponding
to a best least squares approximation are shown. In the non quasi-monotone case
Theorem 2 predicts a slope near 2 in 3 dimensions and considerably better behavior
in 2 dimensions, and we compute the values 2.1 and 1.4 respectively.

Figure 3 shows the same information for the Additive Average method. In this case
there should be no sensitivity to the distributions and this is reflected fully in our
computations. The slope is near 1.1 in 2 dimensions and near 1.2 in 3 dimensions.
According to the theory presented the slopes should not exceed 1. The reason for this
difference will be further investigated.

Finally, in Figure 4 we plot the behavior of the standard Additive Schwarz method
with minimal overlap on the same test problems. In 2 dimensions our quasi-monotone
problem converges with virtually no dependence on H/h. We therefore also include the
case p; = 1 (Poisson’s equation) where the slope is about 0.7. The non quasi-monotone
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Figure 3 The Additive Average method in 2 and 3 dimensions. The condition
number of the iteration operator is plotted as a function of the ratio H/h. The
least square fitted lines have slopes as indicated on the plots,

case is also better than this having a slope of about 0.3. In 3 dimensions the overall
picture looks similar, the non quasi-monotone case has a slope of 0.9, while the quasi-
monotone distribution shows a slope of 0.3 (0.8 for a Poisson problem). This behavior
is better than expected and different from the growth observed in Table 3. In that
table the number of subdomains was allowed to grow (and therefore the number of
jumps in the coefficients). The two cases are therefore not directly comparable, but a
more detailed understanding of the Additive Schwarz method in this context is needed.

8 Conclusion

We have presented and analyzed two additive Schwarz methods, the Additive Average
method and the Additive Diagonal Scaling method and compared them with the
standard Additive Schwarz method with minimum overlap. Both methods behave well
and are easy to implement. The Additive Average method has more flexibility since no
regularity of the division into subdomains is required. We can also prove a satisfactory
bound oun the condition number for this method. The bound does not depend on
assumptions of a quasi-monotone distribution of the coefficients. An increase in the
condition number like H/h is predicted and this is often acceptable since a scaled up
problem tend to be divided into more subdomains (keeping the ratio H/h bounded)
in order to run efficiently on a scalable parallel computer.
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Figure 4 The Additive Schwarz method in 2 and 3 dimensions. The condition
number of the iteration operator is plotted as a function of the ratio H/h. The
least square fitted lines have slopes as indicated on the plots.

Our numerical experiments confirm the important difference that many methods
exhibit when changing from a quasi-monotone to a non quasi-monotone distribution.
Thus, this characterization of distributions where the weighted L? projection is
stable is directly reflected in the behavior of some algorithms. However, it should
be mentioned that a non quasi-monotone distribution is quite special. Both theory
and computational experiments show that many methods are quite good even in the
case where we only have a weak quasi-monotone distribution, that is, one can traverse
through edges as well as faces in Figure 1. Additionally, there are cases where the
growth in the condition number not necessarily implies a corresponding increase in
the number of iterations.

The experiments further confirm that the Additive Average method is not affected
by such a change in the distribution of the coefficients, but our estimates of the relevant
condition number show a slightly faster growth with H/h than predicted by theory.
The cause of this difference is at the present not fully determined and will be subject
to further research.

Finally, it should be noted that the Additive Schwarz method shows better than
predicted performance in both 2 and 3 dimensions on our test problems with
discontinous coefficients. This observation has been reported earlier (see, for example
[BS92]), but it is still not fully explained by theory.
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