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1 Introduction

In this contribution we consider linear scalar elliptic problems on general domains
with space dimension d < 3. For the numerical solution of such problems with finite
elements, multigrid methods are a both popular and efficient choice, cf. Hackbusch
[Hac85]. Such methods work on a sequence of grid levels j = 0,1,...4, where in our
notation j = 0 denotes the coarse grid level and j > 0 the refinement levels. For the
case of adaptive grids, the local multigrid method suggested by [BPWX91] turned out
to be the method of choice. In the adaptive setting it is favorable to consider nested
iterations, wherein the computed solution on the previous level serves as starting
point for the iteration on the new level. A typical distinction of different types of
nested multigrid methods is made by the number p of correction cycles on each level:
W-cycles are characterized by p = 2, V-cycles by p = 1.

For the first time the case p = 0, i.e., performing no coarse grid correction at
all, was seriously considered by Deuflhard [Deu94]. He pointed out that the use of
an a posteriori algorithmic control of this kind of nested iteration in combination
with the conjugate gradient method gave reasonable results in practice. He called
the method cascadic conjugate gradient method. As a distinctive feature this method
performs more iterations on coarser levels so as to obtain less iterations on finer levels.
Shaidurov [Sha94] as well as Bornemann and Deuflhard [BD96] proved accuracy and
optimality of this approach with respect to the energy norm. The latter two authors
could also show, that the conjugate gradient method can be replaced by any smoothing
iteration like the traditional candidates SSOR or damped Jacobi. Because of this fact,
they called this kind of iteration cascadic multigrid methods.
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In order to convey the basic structure, we give a schematic comparison of the
cascadic multigrid method with the nested V-cycle multigrid method:

N ———
V-cycle nested iteration cascadic multigrid method

The purpose of the present contribution is to survey the main methods of the proof,
the main results for the case of adaptive triangulations and to include some numerical
comparisons with nested multigrid.

2 Analysis for general smoothers

In this section, we analyze the cascadic multigrid method with respect to accuracy
and computational complexity using a general smoother as iterative method on each
discretization level.

Let £ C R? be a polygonal Lipschitz domain. We consider an elliptic Dirichlet
problem on  in the weak formulation:

u € Hy(Q) : a(u,v) = (f,v)2 Vv € H3(Q).
For the sake of a clear notation we only consider the H?-regular case, i.e.,
lalle < cllflzs VS € L2(Q).
The induced energy-norm will be denoted by
lull2 = a(u,w)  Vu € HA(Q).
Given a nested family of triangulations (7; )g,__l, the spaces of linear finite elements are
X;j={ueCQ):ulr € P(T) VT €T, ulsn =0},
where P (T) denotes the linear functions on the triangle 7. We have
XoCX1C...C X, C HY Q).
The finite element approximations are given by
u; € X : a(uj,v;) = (f,vj)12 Vu; € X;.
In this section we consider quasi-uniform triangulations with meshsize parameter

1 . .
=277 < h; = maxdiamT < ¢277.
c TeT;
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For ease of notation, we will use the symbol ¢ for any positive constant, that only
depends on the bilinear form a(-,-), on  and the shape regularity as well as the
quasi-uniformity of the triangulations. All other dependencies will be stated explicitly.
Denoting the basic iterative procedure on each level by Z, the cascadic multigrid

method can be written as:
(1) uf=wuo

(1)

iy j=1,...,¢: ul = Ljm;ui_q-

Here 7 .,, denotes m; steps of the basic iteration applied on level j.
We call a cascadic multigrid method optimal for level £ (with respect to the energy
normy), if we obtain both accuracy

llue = uilla = llu — uella,

which means that the iteration error is comparable to the approximation error, and

multigrid complexity
amount of work = O(ny),

where ny = dim X,.
We consider the following type of basic iterations for the finite-element problem on
level j started with ) € X;:

;= Ziam; ullla < 1S.m, (ug — u)lla

with a linear mapping Sj; : X; — X for the error propagation. We call the basic
iteration an energy reducing smoother, if it obeys the smoothing properties
-1
@) NSjm;villa < ¢~ llvyllz2
e S I e X, 2
(i) [Sjm;ville < llvilla
with a parameter 0 < 7 < 1. As is shown in [Hac85] the symmetric GauB-Seidel,
the SSOR and the damped Jacobi iteration are smoothers in the sense of (2) with
parameter y = 1/2, for which the operator Sj,, is simply defined by

0 _ . a0
Uj = Ljm;uy = Sjm, (15 — uj)-

This simple construction does not work for the conjugate gradient method because
of its well-known nonlinearity. However, the conjugate gradient method can be put
into our framework by means of a nontrivial construction as given by the authors in
[BD96] which yields v = 1.

The smoothing property (2(i)) resembles an inverse inequality which is exactly
accompanied by the following approzimation property

luj —ujallzz < chilluy —ujalle  F=1....4 (3)

which can be proved by the standard Aubin-Nitsche duality argument.
The smoothing property and the approximation property are now the main building
blocks of the central convergence estimate for the cascadic multigrid method (1).
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Theorem 1 The error of the cascadic multigrid method with a smoother as basic
iteration can be estimated by

‘1 ‘L by
flug —uplla < c Z —lu; —uj—alla < c Z m—{y”f”Lz-
= My =117

Proof. For j = 1,...,¢ we get by the linearity of Sjm,

luj —willa = g — Zimgui_ille < NSjm,(us — ui_1)lla

IA

8,m; (g — wj—1)lla + 11Sj,m; (-1 = vj_1)la-
The first term can be estimated by the smoothing property (2(i)) and the
approximation property (3):
-1 1
185.m, (uj = uj-1)lla = ij—;Huj —uj-1flr2 < Cgg“uj — uj-1lla-

If we estimate the second term by property (2(ii)) of a smoother, we thus get
c
s~ e < =l = wsalla + g1 = w5 o (@
J

The start v = wo and induction yields the assertion. 0
Since we have , A
QZ”Jhg/c <h; < c2t-h,

Theorem 1 leads us to consider sequences my,...,my of the kind

mj = [lgleml.’ s (5)

for some fixed 8 > 0. Now, a simple evaluation of geometric sums gives conditions for
accuracy and optimality:

Lemma 2 Let the number m; of iterations on level j be given by (5). The cascadic
maultigrid method yields the error

1 hy
e il S ¢ e M, for g2,
(4

1—(2/p7)

and a computational cost proportional to

‘

1
E - d
j:1mgngSc-1_ﬁ/2d~mgng, for B < 2%

This Lemma shows that the two goals accuracy and multigrid complexity are not
contradicting each other as long as

¥>1/d.
As shown in [BD96] either the accuracy or the complexity has to deteriorate
logarithmically for v = 1/d.
Summarizing, we have proved that a plain symmetric Gauf-Seidel, SSOR or damped

Jacobi iteration as basic iteration is optimal for d = 3, whereas the conjugate gradient
method is optimal for d > 2.
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3 Adaptive cascadic multigrid methods

In this section, we develop an a posteriori control for the number m; of iteration on
each level. This will be done for adaptively chosen triangulations, thus dropping the
assumption of quasi-uniformity.

Using a diagonally preconditioned stiffness matrix the authors show in [BD96] for
the smoothing iterations considered

1/2

C —
Sj,m;villa < po Z hTZHUjllzm(T)
J \TeT;

In order to compensate the hidden local inverse inequality we make a local and a
global approximation assumption:

(@) h:;QHUj - uj~1”?:2(T) < cfluy - 'L‘j—lnip(T): VI € T;

.. —1/d
Q) -l < enf Y fllze,

(6)

which are heuristically justified for adaptive triangulations. Note that quasi-uniform
triangulations do not satisfy assumption (ii) for problems which are not H?2-regular.
The proof of Theorem 1 gives the estimate

I3 3 1

1
lue —uilla <c —lluy —uj-afle S e > —mllfl|L2~

j=1 =1 M5

We can now extend the accuracy and optimality result Lemma 2 to the adaptive case.
Here we have to use additionally, that the sequence of number of unknowns belongs

to a geometric progression:
n; < ognj < njp1 < 01Ny 7=0,1,....

With the choice of the iteration numbers m; on level j as

{d+1)/2dy
n
m; = [ me (22) ] , M
J

we get for d > 1 under assumption (6) the final error
. ¢
lue — uglla < T‘ﬁg”f”m
Mg 7oy
and for v = 1 the complexity

4

E my g S CTily Ny.
Jj=1

However, at the intermediate level § we do not know the number n; of nodal points
at the final level £, which means that so far our iteration is not yet implementable.
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To make it implementable, we define the final level £ as the first level on which the
approximation error is below some user given tolerance TOL. Hence assumption (6)

gives us the relation
lu=wjlla (e} ®)
TOL un ’

which leads us to replace (7) by

(d+4-1)/2v
U — Ujila

This algorithm is closest to the a priori choice of the parameters m;. However, in
an actual computation, the basic iteration can be accurate enough much earlier than
stated by theory. Therefore, we now go back to the crucial recursion (4), i.e.,

&
s = 4l < = gl + -1 = 5
J

which we simply turn into a termination criterion for the basic iteration by inserting
(9). We thus end up with the termination criterion

TOL )(d+1)/2

s = 03l < o (o

lu = wjalla + luj—1 —wj_yfles  (10)

where 0 < p < 1 is some safety factor. Note that the smoothing parameter vy dropped
out since we stress the accuracy aspect of our analysis for the adaptive control. Herein
the approximation error ||u — u;{l, is not known, but can be replaced by the estimate

1/d 1/d
ns— T4
=l =il (%51) m (251)

o] Ty

where ¢;_; denotes some estimate of the discretization error on the previous level,
which is certainly provided by any adaptive algorithm; cf. [DLY89, BEK96]. If we
replace the iteration errors ||u; — uflla, [Juj—1 — uf_,|l. by appropriate estimates
8;,65.-1, the design of an implementable control strategy for the adaptive cascadic
multigrid method is completed:

(d+1)/2
TOL [ n; \?
6 <p ( (-—4—> €51+ 851 (11)

€51 Ty 1

4 A numerical experiment

The above designed adaptive cascadic multigrid method has been implemented in four
different variants regarding to the choice of the underlying basic iteration:

e CCG: the conjugate gradient method, i.e., no coarse grid correction
(cascadic conjugate gradient method).
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s CSGS: the symmetric Gaufl-Seidel iteration, le., again no coarse grid
correction.

o BPX: the conjugate gradient method with the so-called BPX multilevel
preconditioner due to Bramble, Pasciak and Xu [BPX90, Xu92, BY93]. This
implementation is closest to the original “cascade principle” of Deuflhard,
Leinen and Yserentant [DLY89, BEK93].

e V-cycle: a multigrid V-cycle using a Jacobi smoother, local — i.e., on
new nodal points and neighbors only — in the case of locally refined
triangulations. This implementation can be viewed as a robust and efficient
automatic choice of the number m; of V-cycles on level j for the usual
nested multigrid method.

The variants were tested using the elliptic problem
—Au =0, ulp, =10°, wlp, =0, Onulp, =0
on a domain () which is a unit square with slit

Q={z €R?: |z <1} N{z ER?: |zo| > 0.0321}.

The boundary pieces are
Iy :{l‘GQ:QEl =1,z9 > 0.03}, Iy = {:13 € :ixi =122 < —0.03},

and F3 = 90 \ (Fl UFQ).

The accuracy parameter was set to a relative TOLyq = 2.24 - 1072, ie., TOL =
lulla - TOLge = 412.52 - TOLy;. Throughout the safety factor was set to p = 0.4.
These choices yield 15 refinement levels with a final triangulation of roughly 4400
nodal points, which allows one to estimate the discretization error using two further
uniform refinements:

lu—wislla o 4o-2 e —wisllzz o o1
Tal. 210 Tale  © 210

where ||ull, = 412.52 and ||u]|z> = 1121.36.

Table 1 Algebraic errors of the variants for TOLyey = 2.24 - 1072

. luis—uislla fluis —uysl ;2 Z CPU-time
variant [l2as II: Tuasl 2 n15
CCG 6-1072 1-1072 2.14 ms
CsGSs 6-1077 1.1072 2.70 ms
BPX 4.1073 2-10—4 3.53 ms
V-eycle (adap.) 2.10-8 1-107¢ 4.27 ms

Table 1 shows the behavior of the (purely) algebraic error for the different variants.
In energy norm they are comparable to the required accuracy. However, the variants
without coarse grid corrections are slightly less accurate by a factor of three, whereas



212 Cascadic Multigrid Methods

the nested multigrid like variants BPX and V-cycle stay nicely below the discretization
error.

With respect to the L?-norm only the variants which include in some sense a coarse

grid correction (BPX and V-cycle) give satisfactory results. This fact points out that
the given termination criterion (11) can be viewed as a robust tool to control the
number of iterations in nested multigrid methods. In terms of Schwarz methods [Xu92]
one observes that the additive variant BPX is by a factor of two less accurate than
the multiplicative V-cycle, but slightly faster.
Remark. The reader should note, that the term optimality has been used in this
paper with respect to the energy norm. As Table 1 already indicates things are totally
different for the L?- or L*™°-norm. By means of simple examples one can prove that the
cascadic multigrid method cannot be optimal with respect to the L?-norm. There is a
rather precise theoretical understanding of this phenomenon, which will be subject of
a forthcoming publication [BK95].
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