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Abstract:

For the solution of practical flow problems in arbitrarily shaped
domains, simple Schwarz domain decomposition methods with
minimal overlap are quite eflicient, provided Krylov subspace
methods, such as the GMRES method, are used to accelerate
convergence. With accurate subdomain solution, the amount of
time spent in solving these problems may be quite large. To reduce
computing time, inaccurate solution of subdomain problems is
considered, which requires a different, GCR based, acceleration
technique. Much emphasis is put on the multiplicative domain
decomposition algorithm since we also want an algorithm which is
fast on a single processor.
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1 Introduction

For the solution of the incompressible Navier-Stokes equations in domains of
arbitrary shape, we use a finite volume method on structured boundary fitted grids.
References [MWSK91, CP92, WSvK192, SWVT92, ZSW95a, ZSW95b] describe the
discretization in detail and [OWSB93, ZSW95a] discuss the capability of the method
to accurately solve a number of laminar and turbulent flows. A Schwarz type domain
decomposition iteration [Sch69, BW94, BSK95] in combination with GMRES [SS86]
acceleration is used. In [BW94], it was shown that significant reductions in computing
time can be obtained using the GMRES acceleration procedure.

The method described in [BW94] requires accurate solution of subdomain problems,
As a result of this, the computing time can be much larger than with single-block
solution for the same number of unknowns. Also, it is not known beforehand how
accurate the subdomain problems must be solved. The required subdomain solution
accuracy may be quite high, especially when grid cells are very much stretched near
block interfaces. A possible solution to both problems is to abandon the assumption
of exact subdomain solution and to allow (very) inaccurate subdomain solution. Since
the preconditioner may now vary in each iteration, GMRES acceleration may no longer
be applied. Instead, a method based on GCR [EES83] is used.

Considerable reductions in computing time can be obtained in this way,
see [BVWO5b, BVWO95a]. The present paper is an abstract from [BVW95a).
Theoretical results and numerical experiments are presented to illustrate the effect
of inaccurate solution of subdomain problems for the incompressible Navier-Stokes
equations.

Parallel computing is of increasing importance. Therefore it is important to compare
the parallel (additive) domain decomposition algorithms with the best multiplicative
algorithms, which are known to be faster than additive algorithms. Therefore, we pay
much attention to multiplicative algorithms.

2 Discretization

For the spatial discretization, we use a finite volume method employing a staggered
grid and central discretization, see [MWSK91, CP92, WSvK192, SWV 192, ZSW95a,
ZSW95b]. For the time discretization, the implicit Euler method is used. With V"
and P™ representing the algebraic vectors of velocity and pressure unknowns at time
t", we get

Vn+1 —_ynr
___At__ — M(Vn,Pn)Vn'H _ GPn+1, (1)

DVt =, (2)

where (1) represents the momentum equations and (2) represents the incompressibility
condition dive = 0. The matrix M represents the linearized spatial discretization of
the Navier-Stokes equations around time level n, G is the discretized gradient operator
and D is the discretized divergence operator on a staggered grid.

The pressure correction method [HW65, Cho68, Vang6] is used to solve (1) and (2).
It consists of three steps. In the first step, an estimate V* of V™! is computed by
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solving (1) with the pressure fixed at the old time level:

Vx_yn

In the second step, the pressure correction AP is solved from

*
DGAP = DV .

4)

Dirichlet boundary conditions are prescribed for AP on boundaries where the normal
velocity is given, and in all other cases Neumann boundary conditions are used. The
last step consists of correcting the pressure: P*t! = P® + AP and computing V"*!
satisfying the incompressibility condition (2)

VPt = V¥ — AtGAP. (5)

3 Domain decomposition

Domain decomposition amounts to the solution of (3) and (4) using an alternating
Schwarz method with minimal overlap, see [BW94, BSK95]. It is written as a block
iteration to solve a system Au = f, with the blocks defined by the subdomains

u™tl = (I — N7*A)u™ + N71¥, (6)

with N~! an approximation to the inverse of the block diagonal or block lower-
triangular matrix of A. The subdomain problems are solved using GMRES [SS86,
Vui93].

With accurate subdomain solution, v™*1 in (6) only depends on the components of
u™ corresponding to unknowns on or near the block interfaces, see [BW94, BSK95].
Collecting these unknowns in a vector v and defining the trivial injection operator
u = Qu, which extends v by zeroes to the full vector length, we get

u™t = (I - N71A)Qu™ + N7'f, (7)

By premultiplying (7) with QT and taking the stationary solution of the iteration
process we get
QTN AQu=QTN"1f. (8)
The system (8) is a system concerning only unknowns on or near the interfac.es
(similar to Schur’s complement). The GMRES acceleration then solves (8); details

are in [BW94, BSK95].
Inaccurate subdomain solution means that we replace (6) by

w™t = ™+ N7 — Au™), (9)

where N represents inaccurate subdomain solution. Because GMRES is used for
subdomain solution, V varies in each iteration step, and we may no longer use GMRES

acceleration.
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The GCR [EES83] method for solving Az = f can be easily adapted to cope with
variable preconditioners. The GCR method seeks to minimize the residual r, = f—Azy
over a search space S =< S1,82,...,8; >. For this purpose, a subspace V}, =<
VU, Va, ...,V > with As; = v; is stored. Gramm-Schmidt orthogonalization of V; is
used to project f onto V. The search directions are updated during orthogonalization
such that the property As; = v; is preserved. This enables a simple construction of the
optimal solution xj. By extending the search space with appropriate search directions
Skt1>Ski2,--., GCR reduces the residual further. With the choice spy1 = 7, the
method is equivalent to GMRES [SS86].

GCR acceleration of (9) uses sp11 = N ~1r4, which corresponds to a single domain
decomposition iteration. For the case of a single subdomain, the method simplifies to
GMRESR [vdVV94].

Another Krylov method that enables variable preconditioners is FGMRES [Saa93).
In [Bor89], for instance, this algorithm was used together with inaccurate subdomain
solution. The emphasis in [B6r89] was not on reduction of computing time but
on restrictions on the subdomain solution accuracy to retain the h-independent
convergence of Neumann-Dirichlet methods.

4 'Theoretical motivation

Inaccurate solution of subproblems reduces the amount of work in each domain
decomposition iteration at the cost of some additional iterations of the outer domain
decomposition iteration. Therefore, a reduction of computing time is only possible if
the number of additional iterations is not too large. A simple analysis of the condition
number of the postconditioned matrix AN~! confirms this statement.

Each iteration involves solving Nu = g with N the matrix from (6). With inaccurate
solution of subdomains, we solve a problem N4 = g with N as in (9). All subproblems
are solved using a relative accuracy.

Condition 1 Fach subproblem Aju; = g; is solved using initial guess 0 and with o
relative accuracy of € so that ||g; — Aut)| < €llg:|| in the Euclidean norm.

Theorem 1 relates N and N.

Theorem 1 If condition 1 holds for all subdomains and all possible right-hand sides
Gis then

(a) I = NyoN;1|| < Ce, for some constant C > 0.

(b) “I - ijtiinl“ <e.

Jjac

Proof:

Proof of (a): Combination of Condition 1 with Aty = g
(inaccurate subdomain solution) gives ||g; — A;: 45 gif) = J(T —

AuA; gl < ellgil] for all gi- From the definition of a matrix
norm it follows that |7 — A3 A <e.
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Without loss of generality we take two subdomains. We get

. _ i—1
[- NN = [ _(I _IAijzizfl)lfllﬂfil_ll I“Aifiz—; } (10)
Partition z = | “! | and note that for the Euclidean norm
lz|| < [ o ]“ [ ] = ||z1]| + ||zz||, then we have
Il - NN = supy<1 [1(4 - NNz < SUP1|z”<1(”(I -

A ARz + 1 = As2 Az ) A AT\ m || + (1 = A Az Vo))
Furthermore for the Euclidean norm ||z| < 1 implies [lz;[] < 1
and ||z2]] < 1 so that finally (a) follows with C = 2 + ||A21 A
Proof of (b): For any block diagonal matrix B = diag(Dy, Ds, ..., D,),
we have: ||B|| = +/p(BTB) = +/p(diag(DT D, ... ,DT:LFDn)) =

max{+/p(D{ Dy),...,

vV p(DED,)} = max{||D1l], ... ||Dy||}- If we use the additive post-
conditioner, then I — NN~ is a block diagonal matrix with blocks
D; =1~ AiA;Y, so that |[I — NN7Y| = max; [T — Az A ]| < e.

Therefore, (b) holds.

0O

Theorem 1 enables us to give a relation between the condition numbers of AN~! and
ANL

Theorem 2 Under the conditions of Theorem 1 and Ce < 1, the condition number
of AN~ satisfies

- 1+ Ce
-t -K(ANTY). 11
R(ARY < 22O an 1)
Proof:
Application of Theorem 1, and noting that || x || is a least
upper bound norm, gives [[NN7Y| = |[NN71 T+ 1| <
14 Ce and |(NN-H)™1| = |[(NN~Y)~1(I - NN7Y) + I| <

1+||(NNTY) 7Y Ce, i i

Since Cec < 1, s(NN1) = [NA1] - [(V=) "] < 1.
Inequality (11) follows from x(AN~!) = wk(ANTINN7!) <
K(AN-1) . k(NI-1).

0

Theorem 2 shows that the subdomain solution accuracy has only a small effect on
the condition number of the postconditioned matrix. This means that, at least for
symmetric problems, the number of outer iterations will not increase (significantly)
when the subdomain accuracy is lowered. The sensitivity of outer loop convergence
to € is given by the constant C in Theorem 1, which can be chosen 1 for the additive
algorithm, independent of the number of subdomains. For multiplicative algorithms
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this sensitivity constant C will probably also be small and independent of the number
of subdomains, however, sharper bounds may require a much more detailed analysis.

The theorems only hold for constant N, but the results in Section 6 show that the
conclusions also hold in case N varies in each iteration.

5 The model problem

We consider flow around a cylinder in a wall-bounded shear flow. Figure 1 shows the
geometry and decomposition of the domain, coarse versions of the multi-block and
single-block grids, and a description of the boundary conditions. The multi-block and
single-block grids consist of 12240 and 10800 grid cells respectively.

The cylinder has diameter @ = 2. The Reynolds number is defined as Re = £(

*
2
allj)

with «* = %, where 79 = pdu/0y is the shear stress associated with the linear

inlet velocity profile. Typical Reynolds numbers for this problem are Re = 1 — 5. Our
results are given for Re = 2. In the computation we have used L = H = 10. For more
details on this computation, see [BW94].

e ABGFIBC: u=0,v=0
s AE: u::%~y, v=1_0
e DCroppy =0, =0

e ED: 0oy =m0, v =0

(d)

Figure 1 (a) Geometry and decomposition of the domain, (b) multi-block grid
(c) single-block grid, (d) boundary conditions

)

6 Results and conclusions

The time measurements in this section are given for only the first 10 time steps to
avoid excessive computing times.

Table 1 lists the computing times (no. of iterations in brackets) for different
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subdomain solution accuracies; the top row is for the algorithm which assumes accurate
subdomain solution. As the subdomain solution accuracy is lowered from 10~ to 1071,
the number of outer GCR iterations shows only a small increase, which, because of
the reduced work in solving subproblems, results in a reduction of total computing
time. This is in accordance with Theorem 2. In these experiments, the most significant
reductions are obtained for the pressure equations.

€ Tot. Mom. Pres.
107%* | 449.1 | 78.6(38) | 315.2(154)
10~% | 465.2 | 58.4(37) | 351.6(155)
)
)

1072 | 292.1 | 43.5(38) | 193.4(168) Tot. | Mom. | Pres.

1071 [ 230.3 | 47.5(48) | 127.6(210) 128.0 | 31.6 | 48.9
Table 1 Results with varying Table 2 Single-block solution
accuracy of subdomain solution for times

the cylinder problem,
multiplicative algorithm, 2
subdomains

Table 2 lists the computing times for single block solution. Comparing Tables 2
and 1, we see that solution time for the momentum equations comes close to single
block solution time. For the pressure equations, solution time is still a factor 2 — 3
larger. With accurate subdomain solution this was approximately a factor 7.

Because of the significant reduction in computing time for the pressure equations,
the total computing time shows a reduction of a factor of 2 by inaccurate subdomain
solution. Still, the computing time with multi-block solution is almost twice as large
as with single-block solution, and is dominated by the pressure solution time. A coarse
grid correction, e.g. [BPS89, BS92], could be implemented for the pressure equations
to reduce computing time further.

Inaccurate solution of subdomain problems combined with GCR acceleration
removes the restriction inherent in GMRES solution of interface equations (8) that
subdomain problems should be solved accurately (enough). The GCR based algorithm
is therefore in general more reliable than the GMRES algorithm for solving interface

equations.
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