EXACT CONTROLLABILITY AND DOMAIN DECOMPOSITION
METHODS WITH NON-MATCHING GRIDS FOR
THE COMPUTATION OF SCATTERING WAVES

M.O. BrisTEAU, E.J. DEAN, R. GLowmski, V. Kwok, J. PERIAUX

ABSTRACT. The main goal of this article is to discuss the solution of scattering problems for
coated obstacles by a methodology combining exact controllability techniques and domain de-
composition algorithms. In this article, domain decomposition techniques are used to split the
computational domain into smaller ones and also to take into account the different physical
properties taking places in different regioms, which may require the coupling of local approxi-
mate solutions defined over non-matching finite element meshes; this coupling is easily achieved
through a weak formulation of the interface, using Lagrange multipliers. The results of numerical
experiments for documented zerospace test cases are presented, showing the good performances
of these new methods, particularly for non-convex reflectors.

1. Introduction.

In a recent publication (see {1]), the anthors have introduced a novel approach for
the computation of scattering waves by coated obstacles. This methodology rests on the
combination of:

(i) An ezact controllability formulation 2 la Hilbert Uniqueness Methods (HUM, [2]), which
allows the fast calculation of limit cycles for wave equations.

(i) Domain decomposition methods for non-overlapping subdomains where the interface
compatibility conditions are enforced via Lagrange multipliers. (For wave equations
this method was introduced in Reference (3], to our knowledge.)

In References [1] and (3] the domain decomposition methodology was used to decouple
subregions with different physical properties, such as air and the coating material, requiring
meshes which do not match at the interface if one wishes to use the same time discretization
step in all subregions. In the present article, we go one step further by imtroducing domain
decompositions whose main goal is to further split the computational domain (for distriburted
parallel computing purposes, for example). The resulting methodology is particularly robust
and well-suited to scattering by non-convex reflectors, which is typical in industrial applica-
tions.
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2. The Generalized Helmholtz Equation and its Equivalent Wave Problem.
The Helmhlotz equation (Maxwell equations in two dimensions for the T.M. mode) for
heterogeneous media is given by

(2.1) ek*U+V -y~ VU =FinQ,
where ¢ and y are the permitivity and permeability coefficients, respectively (we assume that ¢
and p are positive);  is the region of R? where the propagation phenomenon is taking place.

We suppose that 2 is bounded (see Figure 2.1 below} by an artificial boundary I, where an
absorbing boundary condition is prescribed. For simplicity, we specify on I’

Figure 2.1

auU
2.2 e T —
(2.2) o+ VemkU =0,

to be completed by a Dirichlet condition on the boundary v of the reflector w, namely
(2.3) U=g,

where —G is the incident fleld at . All of the above functions are complex valued. The wave
number k is given by

(2.9) k=2xn/T,
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T being the time period.
Remark 2.1. f Q is “flled” with air (or void), 7 = 0 in (2.1) for incident monochromatic
waves. The function U represents the scattered field. Condition (2.2) assumes that T is
located in air {or void).

Following {4], we observe that (2.1)-(2.3) is equivalent to finding T'-periodic solutions of

(2.5) eup — V- g7 Vu= £ in @ x (0,T)(= Q),
(2.6) u=gonyx(0,T)(=0),

) 8
(2.7) o+ Vg =0on T x (0,7)(= )

where u(z, t) = Re(U(z)e’™). From the T-periodicity, u satisfles
(2.8 u(0) = u(T), u(0) = u(T).

3. Exact Controllability Solution Methods.
In order to solve (2.1)-(2.3) or (2.5)-(2.8) by controllability methods inspired from HUM,
we observe that solving the above problems is equivalent to finding a pair {eq, e;} so that

1) ’U.(O) = eg,ut(D) = &1,

;

(3.
\
(3.2) u(T) = &g, ut(T) = €1,

with u solution of (2.5)-(2.7). Problem (2.5)-(2.7), (3.1), (3.2) is an ezact conirollability prob-
lem which can be solved by methods directly inspired from the J.L. Lions Hilbert Unzqueness
Method (HUM) (see, e.g., [2], [5], [6] for an imtroduction to this method and for further
applications).

4. Least Squares Formulation of Problem (2.5)-(2.7), (3.1), (3-2).
In order to apply HUM to the solution of problem (2.5)-(2.7), (3.1), (3.2) an appropriate
choice for the space containing {eq, e1} is

(4.1) E =V, x L}Q), with V; = {¢ | v € H(Q), ¢ |,=g(0)}.
A least squares formulation is given by
(4.2) MinyegJ(v)

with v = {vg, v, } and

(4.3) I(v) = % fn (™ Y (y(T) — vo)[? + el(T) — v} de,
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where, in (4.3), y is the solution of

(4.4) Y-V -u"'Vy=FfinQ,
(4.5) y=gono,

oy 0y
(4.6) —a;-l—,—\/Eﬁ-b—%-‘Oona,
(4.7) y(O) = vo, 1%(0) = v1.

The choice of J is quite natural indeed since the total energy of the system is given by
1 - 2
£0) = 3 [ [P + a7 Vo0 do.

The least squares problem (4.2) can be solved by a conjugate gradient algorithm operating in
space E; such an algorithm is described in Section 6 of [1]

5. Calculation of J'.

In order to solve problem (4.2) by a conjugate gradient algorithm, we need to know the
differential J* of J. To compute J’ we shall use the perturbation method described in Section
5 of [1]. We obtain then

(T'(v)yw) = [qu™'V(vo - y(T)) - Vo dz
(5.1) — Jq ept(0)wo dz + [ \/—f:-p(O)wodf
+ [oep(0)wy dz + [, e(vy — 3:(T))w: da,

for all v ={vo,v1} € E and all w = {wg, w;} € E, with By = Vp x L3(Q) and
Vo={z|z€ H'(Q), z=0o0nv};
in (5.1), the function p is (uniquely) defined by the following adjoint system

(5.2) €Dyt ~ V- ﬂ—lvp =0in Q,

ap dp
5.3 = _ £ =
(5.3) 5 Veu 5t 0 on o,
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(5.4) p=0ona,

(5.5) 2(T) = 4(T) — vy,

(5.6) { ,fﬂ p(T)z dz = [f \/E("Jt(T) - vy)z dl
- fg /‘—lv(y(T) —w)-Vz dz,¥z € V.

From the knowledge of J' we can solve problem (4.2) by a conjugate gradient algorithm
operating in space E = V, x Ly(f2). As already mentioned, such an algorithm is described
in [1, Section 6]: each iteration requires the solution of one forward wave equation (such as
(4.4)-(4.7)), of one backward wave equation (such as (5.2)-(5.6)), and of an elliptic problem in
Q, associated to the bilinear form

{<p,¢}—>/ﬂw-vw dz.

6. A Finite-Difference/Finite-Element Implementation.

The practical implementation of the controllability method is based upon a time dis-
cretization by a centered explicit finite-difference scheme. This scheme is combined with
piecewise-linear finite-element approzimations for the space variables. We use mass lumping
through numerical integration by the irapezoidal rule to obtain a diagonal mass matriz for
the acceleration terms. The fully discrete scheme has to satisfy a stability condition such as
At < Ch, where C is independent of A and Af. To obtain accurate solutions, we need to
have & at least iten times smaller than the wavelenth; consequently, Af has to be at least ten
times smaller than the period. If we assume that the number of iterations is independent of
h and At (assumptions supported by numerical experiments), the solution of the Helmholtz
equation via the new approach involves a number of operations which for a given value of k is
proportional to the mumber of grid points; for this estimate we do not take into account the
time spent at solving the elliptic problems mentioned in Section 5, which in two dimensions
is negligible compared to the time required to solve the wave equations; in three dimensions
it remains to see if the same conclusion holds.

Remark 6.1. In [6] and [7] one may find the detailed description of the solution method for a
controllability problem for the wave equation closely related to the one discussed in this arsicle.
The problem in [6] and [7] is space and time discretized by finite-element and finite-difference
methods similar to those advocated above.

7. Combining Controllability and Comain Decomposition Methods.

7.1 Generualities.
In the particular case of the scattering of waves by coated materials (see Figure 7.1

for such a situation), the waves propagate faster in the surrounding air (or void) than in the
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coating. If one wishes to use the same time discretization step At everywhere with a local CFL
number of the order of one, it is necessary to employ local meshes with quite different space
discretization steps. This observation leads quite naturally to a domain decomposition method
associated to the physical heterogeneities of the problem; furthermore, it leads to the use of
space discretization meshes which do not match at the interface (see Figure 7.2). The crucial
point when combining exact controllability and domain decomposition with non-matching
finite-element meshes is to develop efficient solution methods for wave problems such as (2.5)-
(2.7), (3.1) when ¢ and p ape piecewise continuous. For simplicity we shall discuss first the
solution of (2.5)~(2.7), (3.1) for the physical situation associated to figure 7.1 whose notation
has been kept.

-
g

Q,

Figure 7.1

7.2 4 Domain Decomposition Method for Linear Wave Problems.
The problem to be solved is described by

Bzui -1 azuinc
(7.1) “&5e T Vo (7 V) = o

+ V- (g7 Ve ™) in Q; = 2 x (0,T), Vi=1,2,

(7.2) us = —u™ on g,
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2 2 ;
_y Ou; _, 0utme
(7.3) Youta ==t o =ma x (0,T),
i=l ® i=1 *
(7.4) Uy = Ug OL. T12,

8‘21.]_

(7.5) ,/elp.l————- =0ona,
(7'6) u,,(O} = €o Iﬂu 79'{'(0) =€ !Qu ¥i=1,2

where, in (7.1)-(7.6), u; is the local scattered field and w*™ the incident field. In the case of
monochromatic plane waves, the incident field has the following complex representation:

ui"c(.’c, ) =— tk(t Z,=x a;%;)
with
z = {z;}3—;(d =2 or 3)
and
a = {a'j}?=l
satisfying
< 2
D a3 =
j=1

(we assume that in air (or void) the propagation velocity is ¢ = 1).

NS W\
\VAVAV VAVAVAVAY "

2

Figure 7.2

Remark 7.1. If medium i = 1 is either air or void, then the right-hand side of (7.1) vanishes
(incidentally this right-hand side is the function f in (2.5), to be used from now om).
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To solve (7.1)~(7.6) by domain decomposition, we observe (following [3]) that this system
is equivalent to ﬁndmg {uy, ua, A} so that

Z?:l -]'Q,- 61%‘5;'0.‘@ -+ Zf:l fQ" Lvu’ V’U,_dZE + fl" BU1 ’Uldr

(r.7) = [ w2 —v)dra~ Ty [, a7 O iy

T‘g'—']_ @ fv,;d:z:,V{vl, U‘z} € V—}. X V’:‘n

(7.8) / p(us — uy)dyia = 0,Yu € L*(na),
.
(7.9) u; =g ouo,
du; | .
(710) ’ZL.,(O) = €9 (Q,y 8t ( ) =€y 1925 VZ = 17 2.
In (7.7), V1 and V; are defined by
(7.11) V-l = Hl(ﬂl), Uy = {‘Ug S Hl(ﬂg), Ug = 0on ",’}.

Remark 7.2. The Lagrange muitiplier treatment of matching conditions such as (7.3) and (7.4)
is not new; it has been used systematically for the solution of elliptic or parabolic problems
(see, e.g., [3], 8], and [9] and the references therem).

Remark 7.3. In the particular case of either air/air or coating/coating mterfaces, everything
which has been written previously still holds {particularly Remark 7.1); actually we have now
a much simpler situation since for these two cases we can use local meshes which match at
the subdomain interfaces. Such a situation will be considered in Section 8.

7.3. Time Discretization and Domain Decomposiiion.

In this section we shall use, for simplicity, the formalism of the continuous problem.
However, the following approximation makes full sense only when Vi, Vs, and L*(712) have
been approximated by well-chosen finite-dimensional spaces; we shall address this issue in
Section 7.4. Let A#(> 0) be a time discretization step; denoting by v™ an approximation of
u(nAt), we approximate (7.7)-(7.10) by

n+1._,_un ~1 _oqy

3..1”:2 Ez———yzﬁr—*v,dzﬂ-fgt p VR - Vodz)

(7.12) + /2 el W = Ly A (w2~ v1)dmia
PR Lra 5712 (nAtyuidy + 23_1 Jo, Fruda, V{uy, va} € Vi x V3,
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(713) / (uﬂ-"rl Z.—‘Ll)dﬂfli": 01 VM < L2(712)7vn 2 Oy
T2

(7.14) ugtt = g™ on 7,

(7.15) ul =eg |, uf — ut = 2Ate; Jo, Vi=1,2.

Combinjng (7.13), (7.14) will imply that relation (7.13) also holds for n = —1 and n = -2;
this property is important for accuracy and stability purposes.

Remark 7.4. Scheme (7.12)-(7.15) is a domain decomposition implementation of the well-
known second-order ezplicit finite-differences scheme for the wave equation.

7.4 Space/Time Discretization and Domain Decomposition.

In this section, we shall discuss a finite-element realization of scheme (7.12)-(7.15) and
also the stability of the corresponding fully discrete scheme. We shall also discuss practicalities
such as the use of numerical integration and the iterative or direct computation of the discrete
multipliers.

7.4.1. A Fully Discrete Domain Decomposition Method.

Let Wy, W, and A be finite-dimensional subspaces of Vi, Va and L?(72), respectively.
We denote by Hay, the discrete equivalent of H*({Q;). We approximate then (7.12)-(7.15) by

R T

2= vfg szvz dz
-1 [e1 ul™ —u,
(7.16) +fQ1- Vu sza.’:z: f ey U]_df
= f"m v2 =~ v1)dr1z — Zz_l - u—lau”“: (nA)vdy + f=1 fQi frudz,

V{’Ul,’Ug} & W]_ x Wa; {u”"l 2—‘—2} e Wy x HZh’

(7.17) / puf ™t =l dya =0, Y € A, Vn 2 00" €4,
"z

(7.18) ugtt = g7 on v,
7.19) ul = egn o, ub —ut = 24te1s lg,, Vi=1,2.

In (7.16)-(7.10), R is a space-discretization parameter and egy, €15 and hj are approximations
of eg,e1, and g, respectively; we suppose that eo;; a.nd ep are continuous at iz (we have
dropped the subscript & in (7.16)-(7.19), where u3, v, A are approximations of the related

functions in (7.12)-(7.15)).



300 Exact Controllability and Domain Decomposition Methods
7.4-2. Practical Solutions of Problems (7.16)-(7.18).

Expanding u7 ™%, u5*", A" on vector bases of Wy, Hy;,, and A, we reduce the solution of

problem (7.16)-(7.18) to the solution of a linear system of the following (saddle-point) type:
7.20) 4o+ By =5,

(7.2 Bz=c

In (7.20), 4 is an NV x IV matrix, symmetric and positive definite (possibly diagonal; see (3,
Section 4.1]), B is a M x N matrix (with M << N), and b and c belong to RY and R¥,
respectively. Problem (7.6) has a unique solution in RY x (RM / ker B*) if and only if ¢ belongs
to R(B) (the range of B). From the fact that A is a regular matrix, we can eliminate z from
(7.20); we obtain then that ¥ is a solution of the following linear system

(7.21) BA™'B'y =BA™ % ~c.

For the particular problem considered here, matrix BA~!B* is well-conditioned (on RM / ker B*)
for small values of At; this property strongly suggests a conjugate gradient solution for prob-
lem (7.21) (and (7.20), consequently). Such an algorithm is described in, e.g., {1, Section
8.4.2], [10], [11].

7.4.3. Further Commendts.

The domain decomposition method discussed in the above paragraphs can be generalized
easily to strip domain decompositions like the one shown in Figure 7.2(a). In the case of boz
domain decompositions, like the one of Figure 7.2(b), crossing poinis (like C) require special
attention as shown in {3, Section 4.3].

a, a, a,
c
a, '
a, a, a,
Figure 7.2{(a) Figure 7.2(b)

8. Numerical Experiments.

The above methods have been applied to the solution of various test problems m [1,
Section 9] and in [12, Chapter 4]. The test problem that we consider here concerns the
scattering of a planar wave by a two-piece reflector copsisting of two identical NACA 0012
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airfoils whose chords are parallel; the distance between the two airfoils is Ag (wavelenth in
air); we suppose that the chords are horizontal with the leading edges on the left and that
both airfoils are perfect reflectors. This two-piece reflector is illuminated by an incident
planar wave coming from the upper left with a 45 degree angle of incidence. We suppose that
the frequency of the incident wave is f = 1.2 GHz implying that the wavelength in air is
Ao = .25m. We suppose that the distance between the airfoils is Ag, that the chord length
is 4Ag. We suppose next that both airfoils have been coated by a material whose relative
permitivity and permeability ‘are 7.4 and 1.4, respectively, implying that waves propagate in
the coating 3.2 times slower than in air or void; the thickness of the coating is A\g/10 in the
normal direction. In order to simulate numerically the scattering of the incident wave by the
above reflectors, we embed them in a rectangular domain; the distance between the boundary
of the two-piece reflector and the boundary of the embedding domain has been taken equal
to 3Ag. We have chosen as time step At = T/75, where T = 1/f = .83x10~°. The space
discretization mesh is 4 times finer in the coating regions than in air. We have visualized in
Figure 8.1 the four subdomain decomposition which has been used to compute the scattered
field:

(i) The two coating regioms; each contains 2816 triangles and 1760 vertices; we shall

denote by (23 (resp. {24) the upper (resp. lower) one (see lower part of the figure).

(i) A region denoted by Q,, which closely surrounds the coated reflectors and which
totally located in air (middle part of the figure); it contains 2312 triangles and 1329
reflectors.

(4i) Finally, the "rectangular” ring (upper part of the figure) which surrounds the airfoils
and the three other subdomains; it has been denoted by Q; and contains 21,668
triangles and 11,130 vertices.

We have visualized on Figures 8.2 through 8.5 the contours of the scattered field in
01, Q4, Q3, 24, respectively. For further details on these numerical experiments see [12].
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Figure 8.1: The subdomains and their finite element grid.
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Figure 8.5
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