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Summary

The main goal of this article is to discuss the application of a Lagrange multiplier
based fictitious domain method to the solution of elliptic problems, then of the Navier-
Stokes equations for incompressible viscous flow and finally of linear wave equations.
This method is well suited to finite element approximations and takes advantage of
the variational principles associated to large classes of partial differential problems.
The results of numerical experiments validate this fictitious domain approach to the
solution of partial differential equations with Dirichlet boundary conditions.

1 Introduction: Synopsis

Fictitious domain methods is a general term which covers in fact a large variety of
solution methods for Partial Differential Equations; the literature on these methods
is so large that we shall limit ourselves to [1]-[8] and the references therein. These
methods are based however on the same following principle:

Suppose that one wants to solve the following boundary value problem
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Alu) = finw, (1.1)
B(u) =gony, (1.2)

where in (1.1), (1.2), w is (for simplicity) a bounded domain of R%, v = 8 is the
boundary of w, A and B are differential operators, and f, g are given functions. The
idea is to embed w in a larger domain 2 of very simple shape and to solve on €2 a
problem whose solution # satisfies

ﬂlw = U. (1.3)

There is no miracle here since one has to take into account the boundary condition
(1.2) in a way or another. Schematically we have boundary fitted fictitious domain
methods (in which the finite element or finite difference mesh used to discretize the
“extended problem” is locally distorted in the neighborhood of v ) or genuine fictitious
domain methods in which the mesh used to discretize €2 is essentially independent of
w and 7.

In this article we shall concentrate on the second approach: it does not have the
flexibility of general finite element methods, it is however well suited to the treatment
of Dirichlet boundary conditions such as

U= gon-, (1.4)

via Lagrange multipliers. The possibilities of this fictitious domain methodology will
be illustrated by the numerical treatment of the following problems: elliptic equations
in Section 2, the Navier-Stokes equations for incompressible viscous flow in Section 3
and the wave equation in Section 4.

2 Fictitious Domain Methods for Linear Dirichlet Problems

2.1 Formulation of a Model Problem
Let w be a bounded domain of R%, we denote by v = 9 the boundary of w. The

problem under considération is the Dirichlet problem defined by:
ou —vAu = finw, (2.1)
u=gonvy, (2.2)

where, in (2.1), we have @ > 0 and v > 0.

2.2 A Fictitious Domain Formulation of the Dirichlet Problem (2.1), (2.2)

We follow the approach in [5]. We embed therefore w in €) as shown in Figure 1, below,
and we denote by I' the boundary of . We assume that f and g are reasonably smooth
(typically f € L?(w) and g € H'/2(y)).

It follows from [5] that problem (2.1), (2.2) is equivalent to the following saddle-point
problem:

Find {@i,\} € V x H='/2(v) such that
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L

Figure 1. Embedding of w

/(aﬁv +vVa - Vo)de = /fvdaH— <Av>YweV, (2.3)
Q Q
<p, B — g >=0,Yp € H1/2(y), (2.4)

in the sense that 4|, = u; in (2.3), (2.4):

e f denotes an L?(§2)-extension of f such that f lo=F;

e < -,- > denotes the duality pairing between H~1/2(v) and H'/?(y) such
that < p,v >= f7 pvdy if p € L3 (v);

o V is either H(Q), H}(R), or H5() where Hp() is the subspace of the
functions of H(Q) periodic at I'.

Remark 2.1. The boundary “function” X\ is a Lagrange multiplier associated with the
boundary condition (2.2). Using Green’s formula we can easily show that

ou

’\:”[B_ﬁ]'q’

where [%”7 denotes the jump of 2% at 7. o

Remark 2.2. If one uses penalty, we can approzimate problems (2.1), (2.2) and (2.3),
(2.4) by
Findu. € V such that
/(aﬂev + Vi, - Vv)dz + % /ﬁev dy= /fv dx + % /gv dy,Yv eV, (2.5)
Q

e Q ¥
with € > 0. It follows from, e.g., [9, Appendiz 1] that

21{% “ﬁe - u”Hl(w) =0.
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One of the main drawbacks of the above approach is that after approzimation the
condition number of the discrete analogue of problem (2.5) deteriorates as € — 0,
leading to an ill posed problem. O

2.8 Iterative Solution of Problem (2.3), (2.4)

Problem (2.3) , (2.4) is a typical linear saddle-point problem; such problems can be
solved by conjugate gradient variants of the Uzawa algorithm, like those discussed
in, e.g., [5]. For the sake of completeness we shall describe such an algorithm. For
simplicity, we assume that o > 0. If % is such that A € L?(7y), we can substitute this
latter space to H~'/2(v) in (2.3), (2.4) and solve the saddle-point problem by the
following algorithm:

A0 € L2(v) is given; (2.6)
solve

FPindu® € V such that

/(auov + vVl - Vo) dz = /f'u dx + /)\Ov dv,VwevV, (2.7)
Q J J
and then
Find g € L?(v) such that
/g% dy = /(uo — g)udy, Yu € L*(7), (2.8)
v v
and set
w? = g0, (2.9)

For n > 0, assuming that A", g" w™ are known, compute \"t1 g™t w”*+! gs
Jollows:

solve
Find @™ € V such that
/Q(aﬁnv + vV - Vo)yds = /w“v dv, Vv eV, (2.10)
v
Find g* € L?(v) such that
g pdy = /ﬁ”ud*y, Yu € L2 (v), (2.11)
ke g

and compute

| [ =flg"|2 dv//wnﬁn dy, (2.12)

and then
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)\n-i-l = \" — pnwn, (213)

uth =y — pnt™, (2.14)

9"t = g" — png", (2.15)
If ”9““”L2(7)/”90”L2(q) <, take A = X" G =y if not compute

o = 19" 220 /9" 122y (2.16)
and update w™ by

wtl = g™t (2.17)

Do n=n+1 and go to (2.10).

Remark 2.3. Relations (2.8) and (2.11) clearly imply that g° = v°|, —g and §" = @"|,,
respectively. We have chosen to write these solutions in integral form since this is better
suited for the discrete problems where the discrete analogues of g and u™|y may live
in different spaces. ]

Remark 2.4. Algorithm (2.6)-(2.17) s easy to implement; however we can not expect
it to have optimal convergence properties since the natural space for X is not L?(y)
but H~1/%(x). Iterating in this last space is more complicated, at least if w C RY
with d > 3; in the particular case where w C R* we have shown in [5] that efficient
iterative solvers can be obtained by preconditioning algorithm (2.6)-(2.17) (in fact its
discrete analogue) by discrete variants of the boundary operator (%I — a’%)l/ 2 (see [5]
for implementation details). 0o

2.4 Finite Element Approzimation of Problem (2.3), (2.4)

We consider two dimensional problems only (for three dimensional application see ref.
[6]). In order to discretize the saddle-point problem (2.3), (2.4) we need to approximate
both spaces V and H~/2(y). Let us denote by A the pair {ha, hy}. To approximate
V' we introduce a regular triangulation 7T;, of Q (as shown in Figure 2) with hgq the
largest length of the edges of 7,; then, we (classically) approximate V by

Vi, = {oplup € V' D CO(Q),vth € P,VT € Tp,}, (2.18)

with P; the space of the polynomials in 2 variables of degree < 1. Concerning H~/2(y)
we divide v in subarcs of maximal length h., and denote by .4;, the collection of these
subarcs; we approximate then H~/2(v) (and also L?(v)) by

Ay = {un| prle = constant,Va € Ap}. (2.19)

Remark 2.5. Let us insist on the fact that the exiremities of the arcs of A do not
have to be at the intersection of v with the edges of Tp, (this can happen butl it is
not a necessity); actually we think that the partitioning of v has to be mostly related
to its intrinsic geometrical properties since this approach will facilitate the numerical
treatment of those time dependent problems where w (and therefore «y) is moving. 0

The saddle-point problem (2.3), (2.4) is approximated by the following finite
dimensional saddle-point problem
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Figure 2. Visualization of 7}, and A

Pind {up, \n} € Vi X Ay such that

/(auhvh + vVuy, - Vup) da = / fop dz + / Apvp dy, Yo, € Vg, (2.20)
¢ Q ¥

/(uh — @pndy =0, Vup € Ap. (2.21)

v

In the particular case where g = 0 it has been shown in 5] that
}llir% uple = u in HY(w), (2.22)

where u is the solution of problem (2.1), (2.2); the convergence result (2.22) only
requires that lim he = lim A, = 0. In the cases where g # 0 it has been shown in [10]
that

Lim fun, A} = {2, A} in H'(Q) x H™/2(y) (2.23)
if we assume that
cihy < hg < cah,, (2.24)
with ¢; and ¢z well chosen positive numbers; actually in ref. [10] we shall also find a
priori error estimates and values of ¢; and ¢y implying convergence.
To conclude this paragraph let us mention that numerical experiments for two and
three dimensional test problems suggest (see [5] and [6]) that
flun — ullgr(w) < ch,
”uh - u”L"O(w) < Ch21

which is better than the error estimates proved in [10].

Remark 2.5. It follows from (2.20), (2.21) that to obtain the linear system (associated
to a symmetric indefinite matriz) equivalent to the above discrete saddle-point problem
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K]

I;

Figure 3.

we need the calculation of integrals like fv wyby dy where {w;} (resp., {0k}) is a vector

basis of Vi, (resp., Ap). O

3 Application to the Solution of the Navier-Stokes Equations for
Incompressible Viscous Fluids

8.1 Generalities. Problem Formulations

The fictitious domain solution of the Navier-Stokes equations modelling incompressible
viscous fluids by methods generalizing those described in Section 2 has been discussed
at length in [6]-[8], [11] (see also [12] where one applies this methodology to the
simulation of three-dimensional visco-elastic flow). In the present article (of survey
nature) we shall briefly discuss the fictitious domain solution of external flow like the
one associated with Figure 3; indeed, such a flow is modelled by

%?—VAII+(U~V)H+Vp:finQ\G), 3.1)
V-ou=0in0\ao, (3.2)
u=u,onl'\Ty, u=00n7, (3.3)
VZ—]; —np=00nTy, (3.4)
u(x,0) = up(x), x€Q\w, (withV - -ug=0). (3.5)

In (3.1)-(3.5),

¢ Q\ & is the flow region,

e u={u;}¢, denotes the velocity field,

® pis the pressure,

® (> 0) is a viscosity coefficient,

® n is the outer normal unit vector at 92,

*a-b=371 ab,Va={a}l, Vb= {b}L,,

o (v-V)w = (3T ey Su i, vy = fuddy, Yw = ()l
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e u(0) denotes the function x — u(x,0); more generally, we shall denote by
u(t) the function
x — u(x,t), Vvt > 0.

3.2 An Equivalent Fictitious Domain Formulation
The above Navier-Stokes problem is equivalent to the following wvariational system:
Find {U(t), P(t), \(t)} such that for almost every t > 0, we have

/Ut~vdx—|—1//VU-Vvdx+/(U-V)U-vdx—/PV-vdx
O Q Q iy

:/f'-vdx—l—/g]-vdI‘+/)\-vd7,Vv€V0, (3.6)
Q 1 ¥
[nvdr=o0vue @), (3.7)
7
/ gV - Udx =0, Yq € L2(Q), (3.8)
Q
U=1u,onl'\Ty, (3.9)
U(O) = Uo, such that V - UO =01n Q, UOIQ\E, = Ug- (310)

In (3.6) the space Vj is defined by
Vo = {vlve (H ()% v=00nT\Ty}. (3.11)

In this context the equivalence between (3.1)-(3.5) and (3.6)-(3.10) means that
U}Q\w = u, Plg\p = p. We remind that we are here in a situation where the condition
on I'y, namely (3.4), implies the uniqueness of the pressure associated to u.

8.8 Time Discretization by Operator Splitting

Operator splitting algorithms like those discussed in, e.g., [13]-[16] (see also [17])
provide a systematic and elegant way to decouple the various difficulties associated
with the solution of problem (3.6)-(3.10); the resulting schemes are described in [6]-[8],
[11] and the scheme below is from these references. It is a particular application of the
f-scheme that we have introduced in [18], [19] and which combines good stability and

accuracy properties (particularly if @ = 1 —1/4/2). With At > 0 a time discretization
step, this scheme takes the following form:

U% = Uy; (3.12)
for n. > 0, knowing U™, find {U"+0, pr+o} Um0 and {U?+, P11 gig

Un+0 —_yn
/W-vdx—}—ow/VU"H-Vvdx
Q Q

- / POV . v dx — / A v dy (3.13);
Q ¥
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Q
/v -U™Hqdx = 0, Vg € L*(Q),
Q

/Un+9 p=0, V,LL e (LQ(’)’))d,
5
U™ = u, onT\ Ty;

Un+1—9 _ Un+9

=20y -vdx—i—ﬂz//VU”’"”l_o-Vvdx
o)

+ / (U™ . Um0 v ax
Q

:/f‘”“‘”-de+/)\"+€-vd7+/P"+9V-vdx
Q ¥ Q

—av / vU™Y . Vvdx, Vv € V,
Q
urti-f = Use on '\ T'y;

and finally,

/ Un+1 _ Un+1——9
Q

. n+1 |
TRt de—f—oa//VU Vvdx
Q

—/P"“v.vdx—/vﬂ-vdy
7

Q
= / ! vdx — / (Urt=?. vy Ut =f . v dx
Q@ Q

——ﬁy/VU"““‘9 -Vvdx, Vv € Vg,
Q
/V - U™ gdx = 0, Vg € L*(Q),
!

/Unﬂ u=0,Vue (L2(7)
Y
U™t =y, onT \ Ty

369

:/f‘"+9~vdx—f(U”-V)U"-vdx—ﬂy/VU”-Vvdx, Vv € Vg,
) Q

(3.13)2

(3.13)s

(3.13)4

(3.14)

(3.14);

(3.15);

(3.15);

(3.15)3

(3.15)s

In (3.12)-(3.15) we have taken o = (1 —26)/(1 — 6) and 8 = 6/(1 — ). In relation
(3.14),, § is equal to either # or 1 — @, the second choice making problem (3.14)
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n

L

Figure 4.

nonlinear but increasing the stability of the scheme. We observe that the intermediate
solution Unt1~? is not required to satisfy the incompressibility condition and the no-
slip condition on «y. The solution of the subproblems encountered in each time step is
briefly discussed in the following paragraph.

3.4 Solution of the Subproblems

The solution of advection-diffusion problems such as (3.14) has been discussed
at length in refs. [13]-[16]; we shall not return therefore on those topics. After
discretization, problems (3.13) and (3.15) provide linear systems of the following form

BU =c, (3.16)

{ AU + B*P + C*A  =b,
cUO =d.

Problem (3.16) is a generaiized saddle-point problem. The solution of (3.16) has been
discussed in [6]-[8], [11]; in ref. [11], in particular, we discuss a one shot method, of
conjugate gradient type, which simultaneously adjusts the incompressibility condition
V-U =0 in Q and the no-slip condition U = 0 on ~. The one shot method has good
parallelization properties, but we think that there is still room for many improvements
concerning the speed of convergence; in particular, we think, to apply to (3.16) the
methods developed recently by Y. Kuznetsov for the fast solution of saddle-point
problems (see [20]).

3.5 Numerical Experiments

We consider test problems where w is a NACA0012 airfoil with zero degree and then
5 degrees angle of attack. The airfoil is centered at (0,0) and its chord length is 0.35;
finally w is contained in €2, where Q = (—0.625,0.625) x (—0.5,0.5) (see Figure 4).
The boundary conditions are defined as follows:

u=0o0ny, u=(1-e%{1,0lonT  UTo UT3(=D\Ty), (3.17)
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Figure 5. Mesh of v where “0” are the mesh points on ~ and part of the
triangulation of €2 with meshsize h = 1/128.

du
Vo TP OonTy, (3.18)

where ¢ is a positive constant in (3.17).
As a finite dimensional subspace of V, we choose

where
HYy, = {¢nlon € C°Q), dnlr € Pr, VT € Ty, ¢p =00nT\I's},  (3.20)

with 73, a triangulation of § (see, e.g, Figure 5), P; the space of the polynomials in
T3,z of degree < 1. A traditional way of approximating the pressure is to take it in
the space

Hyp, = {¢n|én € C°(Q), dnlr € Pr, VT € Ton}, (3-21)

where 75;, is a triangulation twice coarser than 7. Concerning the space Ay
approximating A, we define it by

An = {prlpn € (L°°(8w))?, uy is constant on the arc joining (3.22)
2 consecutive mesh points on v}.

A particular choice for the mesh points on v is shown on Figure 5. As a rule we
have to put more mesh points at the leading edge; also mesh points have to be chosen
carefully at the trailing edge. With a bad choice of mesh points on v (e.g., a uniform
mesh for a NACA0012), the Dirichlet boundary condition can not be matched very
well for the case where the product vAt is of the order of 1073. The numerical
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Figure 6. Vorticity density (left) and streamlines (right) for the flow past
NACA0012 with zero degree angle of attack. Flow direction is from the left
to the right, the Reynolds number is 1000, dimensionless time is 1.8.

-0.§ -0.4 -0.2 0.2 0.4 0.6 -0.6 -0.4 -0.2 02 0.4 0.6

Figure 7. Vorticity density (left) and streamlines (right) for the flow past
NACAO0012 with 5 degrees angle of attack. Flow direction is from the left to
the right, the Reynolds number is 1000, dimensionless time is 1.34.

Figure 8. Vorticity density (left) and streamlines (right) for the flow past
NACAOQ012 with 5 degrees angle of attack. Flow direction is from the left to
the right, the Reynolds number is 1000, dimensionless time is 1.525.
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0.2 0.3 0.4

Figure 9. Local enlargement from Figures 7 (left) and 8 (right) of the
streamlines distribution around NACA0012 with 5 degrees angle of attack.

Figure 10

results presented here have been obtained for Re= 10° (taking the chord of the
airfoil as characteristic length) with meshsizes h, = 1/256 to approximate Velocity
and h, = 1/128 to approximate pressure, time discretization step At = 2.5 x 1073
and ¢ = 20 in (3.17). In Figure 6 where the angle of attack is zero degree, the vorticity
distribution and stream lines are almost symmetric with respect to the z; direction.
For the case where the angle of attack is 5 degrees, Von Karman vortex shedding occurs
(see Figures 7 and 8). The local enlargement of streamlines distribution around the
airfoil is shown in Figure 9 for the 5 degrees incidence case.

4 Fictitious Domain Methods for Wave Problems

4.1  Formulation of a Model Wave Problem

We consider for simplicity a wave eguation with constant coefficients but the method
below can be generalized to variable coefficient wave equations and to systems such
as the Mazwell equations and the equations of Flasto-Dynamics. The problem that we
address is the solution of the scattering type problem associated with
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9y

U= gon-y, (4‘2)
Ou  Ou

P T T 4.3
ot + on 60 ot (43)
1(0) = ug, —5%(0) = . (4.4)

The geometrical configuration is the one shown in Figure 10 where 2 is the larger
domain in which w has been embedded; actually I'(= Q) will be used as an artificial
boundary on which the (simple) radiation condition (4.3) has been specified.

4.2 A Fictitious Domain Equivalent Formulation of the Wave Problem (4.1)-(4.4)

Using, once again, a Lagrange multiplier approach it is fairly easy to show that problem
(4.1)-(4.4) is equivalent to finding a pair {U, A} so that

2
%gvdx+/vzf-v@dx+/%%~udr=/,\vdfy, Yo € HY(9), (4.5)
Q r v
/N(U —g)dy=0,Vu e L*(v), (4.6)
v
U ‘
U(0) =Uo, 5.-(0) =y, (4.7)

in the sense that Ul|g\g = u. The notation in (4.5), (4.6) is self-explanatory; in (4.7)
Uy and Uy are well chosen extensions of uy and w;, respectively (Up shall be a H 1
extension of ug, while for uy a L?-extension U; will be sufficient).

4.8 Space and Time Discretization of Problem (4.5)-(4.7)

Let us denote by V}, a finite dimensional finite element subspace of H!({)} defined as
follows:

Vi = {vplon € CO(Q),vp|7 € Py, YT € T1,}

with 7, a triangulation of Q. Similarly we approximate L2(v) by Aj, defined as in
(8.22). We approximate then problem (4.5)-(4.7) by

82Uy, U,
/ atzh vp dX -+ /VUh - Vup dx + / — }V‘l’h dl' = /}\],,’L’h dy, Yo, € V3, (4.8)
0 Q -

ot
r v
/ /,L},,(Uh, - g) d’Y =0, V,U,h & A}“ (19)
v
o,
Un(0) = Uon, —5;(0) = U, (4.10)
{UR (), An()} € Vi X Ay, for almost everyt > 0. (4.11)

Time discretizing problem (4.8)-(4.11) is quite easy, particularly if one uses the scheme
below where we suppose that U,’)f'_l, Ul are already known:



M. O. Bristeau et al. 375

Figure 11

Ul:,H—l + Uiyzl_l - QU;,L n

/ ik Up dx—l—/VUh - Vop dx (4.12)
1 1 “
Un+ . Un—
+/—h—2A—¥—h——7}h dl’ = /AZ'U}L d’)/, V'Uh S Vh,
r ¥
/,U.h(U;Z'?—l ~ gn_H) dy =0, Vup € Ap, (413)
¥

{UP* 00} € Vi, x ApVn > 0, (4.14)
U = Uop, U — Ut = 248U, (4.15)

The above scheme is “almost” explicit; implicitness concerns only those values of U, ,:“Ll
at the nodes of 7; whose associated shape function support intersects v (as shown in
Figure 11)

Assuming that we use the trapezoidal rule to compute the first and third integrals
in the left hand side of (4.12), Uy t" and A? are obtained via the solution of a linear

system of the following form

ApUn + Bi Ay = by, (4.16)
BhUh = Ch,

where 4;, is a IV}, x N}, symmetric and positive definite matrix (with Np=dim V,=the
number of vertices of 7;,) and where By, is a M} x Nj, matrix (with Mp=dim Ap).
Both matrices A;, and Bj, have a very simple structure since:

1. matrix A, is diagonal,
2. the entry b;; of By, is zero unless

/Giwj dy#0
¥

where 8; (resp., w;) is the i'* (resp., j*") basis function of Ay (resp., V4);
indeed most entries of Bj, are zero.
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From the above properties of A and Bj, the My, x M}, matrix BhA,le;"L is sparse,
easy to compute and/or to invert; it is “located along v”. We can either compute it once
for all and then compute its Cholesky factors or solve (4.16) by a Uzawa/conjugate
gradient algorithm operating in RMn,

Remark 4.1. Using energy techniques it is easy to show that scheme (4.12)-(4.15) to
be stable has to satisfy a relation such as

At < ch (4.17)

where, in (4.17), ¢ is independent of ~y. O

4.4 Numerical Experiments

We shall report in this paragraph the solution of three test problems by the fictitious
domain method (briefly) discussed in previous three subsections. These problems are
two-dimensional and concerned by the scattering of harmonic planar waves, such
as eilattkX) (with |k| = 2x/A, X\ being the wave length), by perfectly reflecting
obstacles, namely a disk, a NACAO0012 airfoil and a semi-open cavity. For all these test
problems the artificial boundary I" has been located at a distance of 3 X, at least, from
the scattering obstacle. We time integrate system (4.1)-(4.4) until we reach periodic
solution.

(i) Flirst Test Problem: Scattering by a disk

If we uses the notation of Figure 10, the scattering obstacle w is a disk of radius .25
meter. The frequency is .6 GHz, implying (since the speed of light is ¢ = 3 x 108
meter/sec.) that the wave length is .5 meter. We suppose that w is “illuminated” by
a wave coming from the left and propagating in the horizontal direction. Concerning
discretization we have used a triangulation 7}, consisting of 25,088 triangles and 12,769
vertices with A = A/16. We have taken At = T/25 (with T = 27 /a).

For the present test problem the exact solution is known when I' is located at infinity,
i.e., when = R2. On Figures 12 to 17 we have compared the exact and computed real
and imaginary parts of the scattered wave; we have compared the values taken by the
exact and computed solutions on the half-lines containing the center of w and parallel
to the incidence direction (Figures 12 and 13), opposite to the incidence direction
(Figures 14 and 15) and orthogonal to the incidence direction (Figures 16 and 17).
Further calculations (to be reported elsewhere) show that, for A and At sufficiently
small, the main source of error is the replacement of the original unbounded domain
R?\ @ by a bounded computational one with (4.3) specified on the artificial boundary
I'. Indeed the error decreases if for h and At sufficiently small the distance from T" to
w increases.

(ii) Second Test Problem: Scattering by a NACA0012 airfoil
The obstacle is a NACAQ0012 airfoil. The frequency is 3 GHz, implying that A = .1

meter. The length of the airfoil chord is 4X. The airfoil is illuminated by a wave
coming from the left with a 45° angle of incidence. The computational domain ( is
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the rectangle (—.5,.5) x (—.4,.4) shown on Figure 18 together with the triangulation
Ty, used for computation; 75 consists of 40,960 triangles and 20,769 vertices, with
h = A/16. Figure 19 shows a more detailed view of the mesh, close to the airfoil. For
the time step we have used At = 7/25. On Figures 20 and 21 we have represented
the real and imaginary components of the total field. A shadow region clearly appears
above the airfoil in the illumination direction.

(i) Third Test Problem: Scattering by a semi-open cavity

For this test problem the obstacle ) is a semi-open cavity like the one shown in Figure
22. We suppose that the frequency of the illuminating wave is 3 GHz, implying that
A = .1 meter. The illuminating wave is coming from the lower left of w with a 30°
angle of incidence. The internal length of w is 4, its thickness is A/b and its external
height is 1.4)\. On Figure 22 we have also shown part of the triangulation 7}, used for
the calculation: it consists of 60,384 triangles and 30,545 vertices. For our calculations
we have used h = A\/20 and At = T/50. On Figures 23 and 24 we have represented
the real and imaginary components of the scattered field, respectively.

5 Conclusion

Fictitious domain methods seem well suited to the numerical solution of linear and
nonlinear partial differential equations of various types, associated to domains with
curved boundaries. With respect to the methods discussed in this article we think
that several further issues are worth investigating such as the speed up of the iterative
methods described in this article and the use of higher order approximations in order
to decrease the number of grid points.
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