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We will summarize some of our recent theoretical and numerical results on
domain decomposition and multigrid methods for second order elliptic problems on
unstructured meshes. We first present a general framework for convergence analyses
applicable to unstructured meshes, which can be viewed as a natural extension of the
one formulated by Xu [Xu92] for structured meshes. Then this framework is applied
to two level and multilevel Schwarz methods for elliptic problems on unstructured
meshes. As we allow general coarse grids whose boundaries may be non-matching to
the boundary of the fine grid, special treatments are needed to implement different
types of boundary conditions. We will propose a couple of such treatments. Finally,
numerical results for domain decomposition and multigrid methods on unstructured
meshes are presented to show similar convergence properties as we expect for standard

structured meshes.
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1 Imtroduction

Recently, unstructured finite element meshes have become very popular in scientific
computing, cf. Barth [Bar92] and Mavriplis [Mav92], primarily because of their
flexibility in adapting to complicated geometries and the resolution of fine scale
structures in the solution. Since no natural coarser grids exist as in structured
meshes, practical multilevel domain decomposition and multigrid algorithms must
allow coarser grids which are non-quasi-uniform and with boundaries and interior
elements which are not necessarily matching to that of the fine mesh. Therefore, the
traditional solvers have to be modified so that their efficiency will not be adversely
affected by the lack of structure.

In this paper, we first propose a general framework for convergence analyses
applicable to unstructured meshes, which can be viewed as a natural extension of the
one formulated by Xu [Xu92| for structured meshes. Then this framework is applied
to two level and multilevel Schwarz methods for elliptic problems on unstructured
meshes. Very general meshes and subdomains are allowed: neither the fine mesh nor
the coarse mesh need to be quasi-uniform, the subdomains can be of arbitrary shapes
and sizes, and the coarse mesh need not be nested to, or cover the same physical
domain as the fine mesh. Some existing related works on unstructured meshes can be
found in Chan, Smith and Zou[CZ94a, CSZ94, CZ95, CZ94b|, Cai [Cai95], Bramble-
Pasciak-Xu [BPX91], Douglas-Douglas [DD93], Bank-Xu [BX, BX94].

We subsequently describe how to create a coarse grid hierarchy by successive
coarsening of a fine grid using a maximum independent set approach. As we allow
completely non-matching coarse grids to fine grids, special treatments are needed for
different types of boundary conditions. We will propose a couple of such treatments to
ensure that a proper sequence of coarse subspaces exists for the domain decomposition
or multigrid methods. Then we discuss how to implement interpolation operators from
coarse grids to finest grids.

Finally, numerical experiments on domain decomposition and multigrid methods on
unstructured meshes will be presented to demonstrate similar convergence properties
as we expect for standard structured meshes.

The paper is arranged as follows: In Section 2, we formulate the general framework
for the convergence analysis for the additive type domain decomposition methods, and
a perturbation extension of the result will be presented afterwards for the application
to non self-adjoint parabolic problems. In Section 3 we introduce the fine and coarse
finite element spaces, domain decompositions, the L?-optimal approximation and H*-
stability of the standard finite element interpolant and the Clément interpolant.
Section 4 will be devoted to the application of the abstract convergence theory
developed in Section 2 to second order elliptic problems. Section 5 discusses how to
generate a coarse grid sequence and to implement boundary conditions for Neumann
boundary part, and Section 6 shows some numerical experiments using domain
decomposition and multigrid methods. The results in Sections 2-4 are a summary
of some of the main results in Chan-Zou [CZ95].
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2 Convergence theory for additive preconditioners

Let V, and V¥, 0 < k < p be finite dimensional vector spaces with inner products (-,+)
and (-,-)g, resp. The spaces V* are not necessarily subspaces of V. The space V° is
special, usually referring to the coarse grid space.

Given a symmetric positive definite (SPD) operator A on V and f € V, we are
interested in solving the equation Au = f on V', which arises from the discretization of
elliptic or parabolic problems by using finite element methods. As A is ill-conditioned,
our goal is to find a good preconditioner M for A such that M A is better conditioned
than A, and the action of M is inexpensive to calculate. Then one can use iterative
methods, like Conjugate Gradient method, for M Au = M f instead of Au = f.

We will study preconditioners of the following. additive type:

14
M=) IRyQx, (2.1)

k=0

where the “interpolation” operators I : V¥ — V are linear, and the “projection”
operators @y are the adjoints of I, defined by

(Qru, vi)t = (u, Invr), Yu €V, v € vk (2.2)

and Ry : V¥ — VF are given SPD operators, approximating the inverses of the
restrictions of A on V* in some sense. It is easy to verify that M is an SPD operator
on V.

We remark that the preconditioner form (2.1) is a natural extension of the one
introduced by Xu [Xu92] with nested subspaces. The awareness of this general form
(2.1) was due to [GO93], see also [CSZ94], [SBGI5] and [Hol9s].

Following the framework of Xu [Xu92] for structured meshes in which all V*
are subspaces of V, one can bound the condition number of M A for the present
unstructured cases in terms of three parameters Ky, wp and aq defined as follows:

(P1) For any u € V, there exist ur € V¥ (0 < k < p) such that

u=>7%_¢Ixus and

p
S (B g, wn)i < KolAu, u).
k=0

(P2) For any ur € V¥, k=0,1,---,p

(ALug, Tyur) < wo(Ry Mg, ur)k-

(P3) For any u € V and u, € V¥ (1 <k <p),

P

P
Z(Au,[kuk) < aé'(Au u) %(Z (Alyug, Ipug) )
k=1 k=1

[N
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We have the following bound for the condition number of x(MA) (see [CZ95] for
the proof):

Theorem 1 Under the assumptions (P1) - (P3), k(MA) < wy(ag + 1) K.

Remark 2.1 (P1) and (P2) are natural extensions of assumptions from the theory
for structured meshes by Xu [Xu92], where all the spaces V¥, 0 < k < p, are assumed
to be subspaces of V. (P1) means that ony function in V can be decomposed into a
sum of functions in spaces V*® and this partition is stable with the perturbed “energy”
norm in some sense. (P2) is equivalent to Apax(RrAx) < wo where Ay, = Qp Al is the
“restriction” of A on V*, it means that the approzimation of Ry, to the inverse of Ay,
cannot be “too bad”. (P3) is a condition on the “local” properties of V¥ (1 <k <p)
in some sense, i.e. the image spaces IV, of V¥ under the mapping I, cannot overlap
one another too much in the fine space V.

Note that our (P3) is not the extension of the corresponding assumption used in
[Xu92]. Tt might be replaced by the extension of the so-called strengthened Cauchy-
Schwarz inequality in [Xu92] for nested subspaces with identity operators I; (1 <i <

p):

(P3*) Let &;; € (0,1] be the smallest constants that satisfy
(AL;’u,i,Iju]') S eij(AL-ui,Iiui)%(AIjuj,Ijuj)%, V’U,i & Vi,Uj [S Vj,’i,j = 1, L, P

It is easy to verify that (P1), (P2) and (P3*) imply (P3). Thus (P3) is a weaker
assumption than (P3*). We prefer (P3) to (P3*) as (P3) is more convenient to
check than (P3*) for the non-nested subspaces.

2.1 Multilevel additive preconditioners for SPD operators

Let V and V! (0 <1 < L) be defined as in Section 2, and furthermore, we assume that
for each [ : 1 <[ < L, the space V! can be decomposed into a sum of subspaces V,f
(1 £k < IV;). Then the multilevel additive preconditioners for the given SPD operator
A is defined as follows
L N
M=) ILR.Q} (2.3)

=0 k=1

where the “interpolation” operators I ,lc : V{ — V are linear, and the “projection”
operators Q. are the adjoints of T i defined by

(Qhu, vi) = (u, ILok), Vu e V, ok € V}, (2.4)

and R! : Vkl — V,f are given SPD operators, approximating the inverses of the
restrictions of 4 on V) in some sense. It is easy to verify that M is an SPD operator
on V. Note that for [ = 0, we adopt the notation Ny = LI =1°Q) = Q° RY = RO.

As in the last section, the condition number of M A can be bounded in terms of
three parameters Ky, wy and oy defined as follows:



T. F. Chan et al. 163

(P1’) For any u 6 V, there exist ul, € V! (0 <1< L, 1<k < N;) such that

U= Z[ _ Z ALl and

L N

Z Z((Ri)‘lui, ub)r < Ko(Au, u).
1=0 k=1
(P2') Forany u,, € VI, 0<I<L,1<k<N,

(ALjug, Iiu) <W()((RA) g, )

(P3) ForanyueVandul, € V/,0<I< L, 1<k <N,

Ny Ny 1

s i

E E (Au, ILub) < of (Au,w) %< E E (ALl Ihub) )'.
1=0 k=1 1=0 k=1

Similar to Theorem 1, we have

Theorem 2 Under the assumptions (P1") - (P3'), k(M A) < wy(ap + 1)Ky.

2.2 Additive preconditioners for small perturbations of SPD operators

The results of this section are applicable to general non-symmetric parabolic problems,
cf. [CZ94b, CZ95]. Let V be a finite dimensional space with the scalar product (-, -),
and E a non-symetric operator on V which is a small perturbation of the SPD
operator A, that is, E = A + B, and we solve the equation Eu = (A+ B)u = f on
V. Our goal is to find a good preconditioner M for the non-symmetric operator F.
Then we can use iterative methods, like GMRES or BiCGSTAB, to solve MEu = M f
instead of Eu = f. Let us consider the GMRES method. It is known (cf. [EES83])
that the convergence rate of GMRES depends on the following two parameters:

[| M Eulla

(u, MEw)4
= ——— = 2.r
Ao=min 0 T (25)

If 3, > 0, GMRES converges, and at the mth iteration the residual is bounded as (cf.
[EES83])

/2
prs - drmaa < (1) jaas - M
M2

Let the spaces V¥ (1 < k < p), the scalar products (-,-);, linear operators
I, : V¥ 5 V| the adjoints Q. of I, and the SPD operators Ry, : V¥ — V¥ be defined as
in Section 2. Then we define the preconditioner M as in (2.1) by M =>4 _, i Ri.Qx
for operator E. Note that we still use an SPD preconditioner M even though E is

non-syminetric.
We introduce two assumptions for the perturbation operator B:
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(P4) For any u € V and ug € V¥, 1 <k <p,
P i 1 %
S (Bu, Tux) < o (Au,u)? (Z(Alkuk, Tiw))
k=1 k=1
(P5) There exists a constant y; € (0,1) such that for any u,v € V,

|(Bu,v)| < pa flullallv]la-

We have the following estimates about two parameters 3; and gz which determine
the convergence rate of GMRES iteration for solving MEu = M f (see [CZ95] for the
proof):

Theorem 3 If in addition to (P1) - (P5), we assume further that

1—pq)?
2 < A-m) 2.6
/‘Ll + a1 > 2(4)0K0 bl ( )
then we have
(e, MB)s _ (1= m)° 1M Bulls ) .
> = < % 2 B
R P Py oS k= 7 P (1+a0+on+pm)

3 Finite elements and domain decompositions

For an open bounded domain 2 in C R? (d = 2,3), suppose we are given a family of
shape regular (not necessarily quasi-uniform) triangulations {7"} on €, consisting of
simplices. We will not discuss the effects of approximating 2 but always assume that
the triangulations {7} of Q are exact, i.e., Q2 is either a polygon or a polyhedron, and
Q = Q" = U nernt. Let VP be a piecewise linear finite element subspace of Hj ()
defined on T,

Decompose the domain {2 into p non-overlapping subdomains QF (1 <k <p), then
extend each Q* to a larger one QF such that the distance between 80F and QK is
bounded from below by & > 0. We allow each Q* to be of quite different size and of
quite different shape from other subdomains. Then we define the subspaces {VF}Y_ A of
V" corresponding to the subdomains {QF},_, by V¥ ={v € V*; v=0 on Q\0F}.

We introduce also a coarse grid 7# Wthh forms a op-shape regular triangulation
of €2, but has nothing to do with T?, i.e., none of the nodes of 7H need to be nodes
of Th. 0 Let Q° be the coarse grid domam, ie. Q0 =Umernrt.

Denote by VO (resp. V) the subspace of H}(Q20) (resp. H'(€°)) consisting of
piecewise linear functions defined on 7. Note that Q° usually does not match with
Q, and VO ¢ V™. )

In addition, we need to impose a few reasonable assumptions on the coarse grid 2°.
Roughly speaking, we assume that for each coarse element 77, all its neighboring fine
elements having non-empty intersections with 77 form a subregion whose measure
can be bounded by a constant times the one of 7; the coarse grid part outside the
fine grid is of the fine element sizes while the fine grid part outside the coarse grid is
of the coarse element sizes. See detailed assumptions in [CZ95].
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3.1 H'-stability and L?-optimal approzimation of linear interpolants

As the coarse space V° is non-nested to the fine space V" for our interest, the
convergence proof for the domain decomposition methods requires the existence of
an operator o mapping the non-nested coarse space V° to a nested subspace of V*
satisfying the following H'-stability and L2-optimal approximation properties: for any
coarse grid function u € VO,

[Houlio < Clulygo, |lu—~Ioullo.a < Chlufyqo

where 0V is the coarse grid domain. More specifically, we require these two properties
to hold locally in order to deal with general unstructured meshes.

There exist many options for such grid-transfer operators. But as this grid-transfer
operator Iy enters the algorithm, we want it to be as simple as possible.

Standard and modified finite element interpolants The simplest one is obviously
the standard finite element interpolant II; corresponding to the fine space V". To
make IHV° a subspace of the fine space V" we need some special treatment on
the part of the coarse grid boundary close to the fine grid boundary part which
assumes Neumann boundary conditions. If one has pure Dirichlet boundary conditions,
then the zero extension operator outside of the coarse grid domain should be the
most natural and also effective option, cf. [CS94, CSZ94]. If one has other types of
boundary conditions, one choice is to require that the coarse grid covers the fine grid
Neumann boundary part, then IIj is well-defined everywhere in the fine grid domain,
cf. [C8Z94, CZ95, CZ94b|. It is shown that this interpolant has the required two
properties.

Another choice is to define the operator I in the interior part of the coarse grid
domain by the standard interpolant I1;, but outside of the coarse grid domain by other
simple linear interpolation, see Section 5 for more details.

Clément’s interpolant For the proof of the convergence of domain decomposition
methods, or more specifically for the verification of the partition assumption (P1) in
Theorem 1, we need another grid-transfer operator Ry mapping the fine space V% to
the coarse space V0 and Ry must also possess the two properties of the H L stability
and L?-optimal approximation: for any fine grid function u € vh,

IRHull’QO < C1u|1,g, ]lu - RHUHO,QO < CHI’U,[LQ.

However, as we are dealing with unstructured meshes which can be non-quasi-
uniform, Ry should be defined completely locally. We know the standard finite
element interpolant corresponding to the coarse space VY is defined locally, but it
does not possess the required two properties. Two satisfactory operators are Clément
interpolant [Cle75] and Scott-Zhang interpolant [SZ90], cf. [CSZ94, CZ95, CZ94b].
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4 Two level and multilevel additive Schwarz method for elliptic
problems

In this section, we apply the general theory of Section 2 to the following second order
elliptic problems:

_ Z B (aU8 ) +bu=f, inQ (4.1)
i,g=1
with some mixed boundary conditions on 9Q. Here QCR?(d = 2,3) as described in
Section 3, (a;;(x)) is symmetric, uniformly positive definite, and b(x) > 0 in Q.
The weak formulation of the above problem is: Find u € H{ () such that

Aq(u,v) = (f,v), Vv € H}(Q)

with

The finite element problem is: Find v € V" such that

Aq(u,v) = (f,v), Yo € V. (4.2)

4.1 Two level additive Schwarz method

Based on the local finite element spaces V* (1 < k < p) and the coarse space V' = VH

defined in Section 3, Schwarz methods are preconditioning for the linear system (4.2)
that are built using local and coarse grid solves.

We define scalar products (-,-)g = (-, -)o.qx on V¥ for 1 <k <pand (-.-) = (- -)o
on V", and then define an SPD operator A on V" and a coarse operator Ay by

(Au,v) = Aq(u,v), Yu,v € Vi (Agu,v)o = Ago(u,v), Vu,v € VO
and local operators Ag, 1 <k < p by
(Apu, v) = Ak (u,v), Vu,v e VFE,

Since VF ¢ V*, 1 < k < p, we define I} : V¥ — V* to be the natural injection
operator. Note that VO ¢ V. Define Iy : V? — V" to be the standard interpolant
I discussed in Section 3.1. One may also use other choices of Iy. e.g.. the Clément
mterpolant R Choose the local solvers Ry, 0 < k < p to be exact s()l\us ie.
R_ = A;. Then the preconditioner M in (2.1) for A is: M = o Ik AL Q..

The following theorem gives the bound of the condition number h(J\I A). These

results were proved in our previous work [CZ94a, CSZ94], but only global bounds
were obtained there.

Theorem 4 Under the assumptions (A1) - (A6), we have

2

H
MA)<C a3
( ) ¢ 11}1"32(]} (Sf_ ’
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Outline of the proof. By Theorem 1, it suffices to verify the three assumptions
(P1), (P2) and (P3). (P2) is a direct consequence of the Cauchy-Schwarz inequality
and the two properties of H'-stability and the L?-optimal approximation for the
interpolants [y discussed in Section 3.1, which gives the bound wy = O(1). (P3) follows
easily from the Cauchy-Schwarz inequality and the assumption that any point in 0
belongs to only a fixed number of subdomains, which gives us a bound oy = O(1). For
(P1), we use the Clément interpolant Ry and the partition of unity associated with
the subdomains to define the required partition. Then (P1) can be proved using the
two properties of H!'-stability and the L2-optimal approximation for the interpolants
I and the Clément interpolant Ry, giving a bound K, = max; HZ/ 82.

4.2 Mullilevel additive Schwarz method for elliptic problems

Let Q@ C R? (d = 2, 3) be a convex polygonal or polyhedral domain. Consider the same
elliptic problem as defined in (4.1) and its finite element discretization (4.2). We will
construct multilevel additive type preconditioners for the finite element system.

Let {T'}{, be a not necessarily nested sequence of shape regular triangulations
on  with h; the maximum diameter of all elements in 7!. 7% = 7" is the
finest triangulation on which the finite element space V* and in return the finite
element problem are defined. Denote the coarser domains corresponding to the coarser
triangulations 7%, 0 <1 < L — 1 by Q.

For 0 <l < L, let V! ¢ HY(Q) be the piecewise linear finite element space defined
on 7! with proper boundary conditions imposed.

Assume that for each level I = 0,1,---, L, {Qi}i\l ; is an overlapping domain
decomposition of ¥, obtained by extending a given non-overlapping subdomain
covering {Q4}, of ! such that dist(802%,00 NQY) > 6 > 0,1 <k < N § is
called the I-th level overlapping ratio. Here the boundaries of the subdomains 2}, are
required to align with the boundaries of the I-th level elements in 7. We also impose
some assumptions on each coarse grid similar to the ones discussed in Section 3, see
[CZ95] for details.

For each coarser space V! (1 <1 < p), we define a mapping I; : V! — V" to be the
standard finite element interpolant IT;, with proper modifications on boundary nodes,
and for each subdomain ch on I-th level, define a local subspace by

W={veVy v=0 on 8%NQ}cCV
and a prolongation operator I : Vil — V" to be I, but I}’s adjoint @}, : V* — Vi by
(Qbu,vt) = (u, Itol), Yu € Vh ok eV
where (-,-); = (-,-)o.q is the scalar product in L2(€2).
Furthermore, we define local operators AL : V} — V! by
(Afu,v) = Aqu (u, v), Yu,v € Vj,
and let Rt = (AL)~! for simplicity of exposition, then we may construct the additive

Schwarz preconditioner as in (2.3) by
L N L N

M= 3 IRQL =" 1(4) QL.

1=0 k=1 =0 k=1
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For the condition number (M A), we have

Theorem 5 Under the assumptions (H1) - (H4), x(MA) < p?L?, where p =
maxi<i<r, (b + hi-1)/61-

Outline of the proof. By Theorem 2, it suffices to verify the three assumptions
(PV1’), (P2') and (P3'). To this aim, we need the two properties of the H L_stability
and L2-optimal approximation for the interpolants I; and the Clément interpolant
discussed in Section 3.1; and moreover, we need also the H '-stability and L?-stability
of the interpolants Ij,.

To define the proper partition in (P1), we use the orthogonal projections Pt
H'(Q) — LV! defined by

Aq(Plu,v) = Ag(u,v), Vu e H'(Q),v € LV,

and the following property of projections P! which can be proved by using the Aubin-
Nitsche trick, Sobolev extension theorem and Clément’s interpolant: for 0 <1 < L,

”'U — Pl'U”O‘Q 5 hy “’U“LQ, Vove Vh’.

Using these results, we can show that Ky = O(p%L), wp = O(1) and oy = O(L).

Remark 4.1 The condition number bound given in Theorem 5 grows like L?. It is
known that in the structured case, one can remove this dependence on L and obtain
optimal condition number (cf. Zhang [Zha92] and Oswald [Osw98]). At this point, we
do not know how to oblain a similar optimal bound for our unstructured case.

4.8  Additive Schwarz method for non-symmetric parabolic problems

The abstract framework of Section 2.2 can be applied to general non-symmetric second
order parabolic problems to obtain similar optimal convergence results as in structured
meshes. We remark that symmetric positive definite solvers can be used both for local

subproblems and for the global coarse problem. We refer to [CZ94b, CZ95] for more
details.

5 Treatment of Neumann boundary conditions

Practical multilevel algorithms using unstructured grids require some method to
produce the coarse grid hierarchy (since it not naturally obtained from the fine grid
problem), along with the associated interpolation and restriction operators. In [CS94],
we generate a sequence of coarse grids by recursively coarsening a fine, unstructured
grid using a maximal independent set approach [Gui93]. We observed that the
performance of multilevel methods using grids generated by this method performed
as well as standard multilevel methods on a structured mesh, but the performance of
the methods deteriorated considerably when a mixed boundary condition was used
instead of a purely Dirichlet boundary condition.
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The convergence rate proofs in [CSZ94| for domain decomposition methods with
non-matching grids using interpolations with zero extension required the assumptions
that the coarse grid covers all of the Neumann boundary and that no coarse grid
element lies completely outside the fine grid. The motivation for this was that with
zero extension outside the coarse grid, corrections were being improperly made for the
parts of the fine grid which lie outside the coarse domains. While this would not have
a serious effect for problems with Dirichlet boundary conditions, it would slow down
the method for problems with Neumann boundary conditions. Since the maximal
independent set approach for grid coarsening generally creates coarse grid domains
which are subsets of the fine grid, this suggests that the observed deterioration in
the rate of convergence for mixed boundary condition problems may be remedied by
either creating coarse grid domains which completely cover the fine grid domain or
improving the transfer matrices used in the multilevel methods to get from one level
to the next. We will discuss these two approaches next.

5.1 Modifying coarse grid boundaries

A sequence of coarse grids is generated by finding the maximal independent set of
boundary nodes by eliminating every other boundary node and then finding the
maximal independent set of the interior nodes. The resulting vertex set is then
triangulated using a triangulation algorithm. Since this approach for grid coarsening
generally creates coarse grid domains which do not cover the fine grid domain,
we modify the coarse grids so that they do not violate this condition. In our
implementation, we physically move the boundary nodes of the coarse grids in a
systematic way so that if a fine grid node to be eliminated is exterior to the coarse grid
boundary, the positions of one or more nearby coarse boundary nodes are adjusted so
that the fine grid node will be interior to the new coarse grid boundary (see Figure 1).
Yor our purposes, the boundary adjustment algorithm need only be applied to the
edges where a Neumann boundary condition occurs and is not necessary for edges
with a Dirichlet boundary condition. For practical purposes however, we applied the
boundary adjustment algorithm to all edges regardless of the boundary condition.

5.2 Approzimate interpolation/restriction operators

An alternative to modifying the coarse grid domains is to instead improve the
interpolation and restriction operators used to transfer information between different
levels. The interpolation matrices used in [CS94] were formed by taking each fine node
and searching for the coarse grid element in which it lies, then interpolating with the
coarse nodes which make up that element. If no such coarse grid element can be found,
then zero weights were set for all coarse nodes. This results in a zero extension for all
fine nodes exterior to the coarse domain. The restriction matrices were taken to be
the transposes of these interpolation matrices.

Instead of zero extension for fine nodes exterior to the coarse grid domain, we have
modified the current interpolation matrices for these points by selecting the nearest
coarse boundary edge and interpolating with the two coarse nodes which make up
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Figure 1 Modifying the coarse grid boundaries. Shaded region is the fine grid
domain, dashed line is the coarse grid boundary, dotted lines show coarse grid
boundary adjustment. L and R are coarse boundary nodes, while C is the fine grid
boundary node to be eliminated. Modify coarse edges by moving R.

that edge. Values at these exterior fine nodes were approximated with the value at the

nearest point on thig coarse boundary edge

(see Figure 2). This idea was motivated

by Bank and Xu’s [BX94] coarsening algorithm for hierarchical basis methods.

Figure 2 Values on a fine grid point outside the coarse domain, ¢, are
approximated with the nearest point, p, on the nearest coarse boundary edge

(thick line).

6 Numerical results

In this section, we provide some numerical results of domain decomposition and
multigrid experiments on unstructured grids for the Poisson equation with the airfoil
mesh (from T. Barth and D. Jesperson of NASA Ames) shown in Figure 3 as our fine
grid domain. All numerical experiments were performed using the Portable, Extensible
Toolkit for Scientific Computation (PETSc) of Gropp and Smith {GS], running on a
Sun SPARC 20. Piecewise linear finite elements were used for the discretizations and
the resulting linear system was solved using either two-level overlapping Schwarz or
multigrid preconditioning with full GMRES as an outer accelerator. We compared two
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different triangulation algorithms: Cavendish [Cav74] and Baker [Bak94] algorithms.
The coarse grid hierarchy of the airfoil mesh triangulated with Baker’s algorithm is
shown in Figure 4 where G? refers to the first coarsening of the fine grid, G! is the
coarsening of G2, and G? is the coarsening of the G1.

‘ P
s; AVAVAQ ﬂA

k]
K

RO

A v'

AVA X vl#'&x‘v'ﬁi'ﬁﬁ‘
AR R

Figure 3 The airfoil grid with 4253 unknowns.

In our first experiment, we solve a mildly varying coefficient problem:

5] ou o . Ou 2 )
5 (14 20)50) + 5L (1 + sinlda =+ 4y)57) = o2 sin(3y)

with either a purely Dirichlet boundary condition or a mixed boundary condition:
Dirichlet for z < 0.2 and homogeneous Neumann for x > 0.2. For this problem, the
Dirichlet condition was u = 22 sin(4y).

We solved this problem using two-level additive and multiplicative Schwarz
preconditioning with the fine grid domain partitioned into 32 subdomains using the
Recursive Spectral Bisection method as in [CS94]. The initial iterate is set to be zero
and the iteration is stopped when the discrete norm of the residual is reduced by a
factor of 1079.

The results are summarized in Table 1. For these results. the coarse grids used
were triangulated using Cavendish’s algorithm. The column labeled “unmodified
boundaries” shows the number of iterations until convergence for coarse grid domains
which do not cover the fine domain with both non-zero extension of fine nodes
in G*\G*, and zero extension (in parentheses). The column labeled “modified
boundaries” shows the results for coarsening with coarse grid domains covering fine
grid domains.

The second experiments show the results for the Poisson equation using multigrid
preconditioning. The same two kinds of boundary conditions were used, but with a
homogeneous Dirichlet. condition instead. A V-cycle multigrid method with pointwise
Gauss-Seidel smoothing and 2 pre and 2 post smoothings per level was used with the
same initial iterate and the stopping criterion was reduced to 107%. The results of
the multigrid experiments on the airfoil grid are summarized in Table 2, with both
Cavendish triangulated coarse grids and Baker triangulated grids. The method of
triangulation seemed to have little effect on the convergence rates.
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Table 1 Multiplicative DD iterations for the airfoil grid with 4253 unknowns. *
indicates identical results since no coarse grid was used.

Overlap Unmodified Boundaries | Modified Boundaries
(# elements) | Coarse grid | Dir BC | Mixed BC | Dir BC | Mixed BC
None 23 (*) 73 (%) * *
ez 9 (9) 9 (17) 9 10
0 G 15 (12) 17 (24) 15 17
il 20 (20) 21 (33) 19 24
None 13 (%) 39 (%) * *
G? 6 (6) 7(9) 7 8
1 feX 9(9) 10 (16) 10 10
v 12 (12) 13 (19) 12 i5
None 10 (*) 30 (*) * *
G? 5 (5) 6 (9) 6 7
2 G 8 (7) 8 (12) 8 8
GY 9 (9) 11 (15) 9 13

In addition to the airfoil domain, we ran experiments on an annulus domain [CS94]
for comparison. Multigrid results on the annulus grid are summarized in Tables 3-5.

The numerical results show the significance of the assumption that when
interpolations with zero extension are used, the coarse grid must cover the Neumann
boundary of the fine grid problem; when the coarse grid domains do not cover the
Neumann boundary, the convergence rates deteriorate noticeably.

The multigrid experiments on the annulus grid show that in both approaches used
to treat Neumann boundary conditions, we obtained methods which were nearly mesh-
size independent.

The zero extension transfer operator is the simplest to implement and effective for
Dirichlet boundary conditions. If there are Neumanu boundaries, then the improved
interpolation approach seems to work well and is not too difficult to implement. It
can also be used with independently generated coarse grids. The modified boundary
approach is equally effective but can be less robust.
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Table 2 MG iterations for the airfoil grid with 4253 unknowns.
Cavendish Triangulation Results
MG Unmodified Boundaries Modified Boundaries
levels || nodes | Dir BC | Mixed BC || nodes | Dir BC | Mixed BC
2 1170 5 (5) 6 (8) 1170 5 6
3 338 5 (5) 6 (9) 342 5 7
4 95 5 (5) 7(9) 98 5 8
Baker Triangulation Results
MG Unmodified Boundaries Modified Boundaries
levels || nodes | Dir BC | Mixed BC || nodes | Dir BC | Mixed BC
2 1170 4 (4) 5 (8) 1170 4 6
3 336 4 (4) 6 (9) 333 5 7
4 98 5 (5) 7 (9) 98 5 7
Table 3 MG iterations for the annulus grid with 8448 unknowns.
MG Unmodified Boundaries Modified Boundaries
levels || nodes | Dir BC | Mixed BC || nodes | Dir BC | Mixed BC
2 2175 5 (5) 8 (48) 2175 5 8
3 574 5 (5) 8 (58) 572 6 8
4 158 5 (5) 8 (50) 156 6 8
Table 4 MG iterations for the annulus grid with 2176 unknowns.
MG Unmodified Boundaries Modified Boundaries
levels || nodes | Dir BC | Mixed BC || nodes | Dir BC | Mixed BC
2 575 5 (5) 7 (20) 575 5 7
3 159 5 (5) 7 (20) 159 5 7
4 47 5 (5) 7 (20) 47 5 7
Table 5 MG iterations for the annulus grid with 576 unknowns.
MG Unmodified Boundaries Modified Boundaries
levels || nodes | Dir BC | Mixed BC || nodes | Dir BC | Mixed BC
2 159 4 (4) 6(11) 159 4 7
3 47 4 (4) 6 (12) 47 4 7
| 4 15 4 (4) 6 (12) 15 4 7
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