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1 Introduction

Suppose that we are-given a linear system
Az =b 1)

where A € R™*™ is a nonsingular matrix, z,b € R™ are vectors. In order to compute
the solution of (1) iteratively, O’Leary and White propose multisplitting methods in
[6] which are based on several splittings of the matrix A. More precisely, in [6] a
multisplitting of A is defined as a collection of triples (Mg, Nk, E), k=1,2,---, K,
such that for all k, My, Ny, E; are n X n matrices, each M} is nonsingular,
A = M, — Ng, and Ej is a diagonal matrix with nonnegative entries satisfying

K
>, By = I. The corresponding multisplitting method to solve (1) is given by the
k=1

iteration

K
= ZEkym’k, m=0,1,--- (2)
k=1

where
Mpy™® = Npz™ +b, k=1,2,---,K.

This multisplitting method has a natural parallelism, since the calculations of y™* for
various k are independent and may therefore be performed in parallel. Moreover, the i-
th component of y™* need not be computed if the corresponding diagonal entry of Ej,
is zero. This may result in considerable savings of computational time. Convergence
results for method (2) were first given in [6]. Later, Neumann and Plemmons [5]
obtained more qualitative resuits for one of cases considered in [6].
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2 Parallel Multisplitting TOR Method

Suppose that A is a nonsingular n X n matrix, for k =1,2,---, K, Lk, Fi, Uk, E, are
n X n matrices, Ly and Fy are strictly lower triangular matrix satisfying

(1) A= D - Ly — Fy, — Uy, where D = diag(A) is an n x n and are diagonal matrix
and nonsingular, and each Uy is zero-diagonal matrix.

K
(2) Y Ex = I (n x n-identity matrix), where each Ej is diagonal matrix and E;>0.

k=1
Then the collection of triples (D — Ly — Fy, Uy, Ex) (k= 1,2, .-, K) is called a
multisplitting of A.
For real numbers w, o and 3, we define the following function Gy: R*—R", for
k=12,--- K

Gi(z) = [D — (aLy + BFe)] {[(1 —w)D + (w — &) Ly, + (w — B) Fy + wU]z + wb}
Multisplitting TOR (MTOR) Method

For any starting vector z° € R"

k=K
g™ = 3" BiGi(a™) m=0,1,2,---
k=1
until convergence.
Now we define the matrix

K
Turor(w,a,B) = Y BulD —aly — fF (1 -w)D+ (= ) L+ (0 — B)Fe + wUi]

k=1
3)
and the vector
K
guTor(w,a,B) = Y Ex[D — aLy — BF] " wb.
k=1
Then from the multisplitting TOR. (MTOR) Method, we get
g™ = Tyror(w, o, B)2™ + guror(w,a, ) , m=0,1,2,---. (4)

For the MTOR method, corresponding to particular choices of the parameter set
(w, a, B) to be (1,0, 0), (1, 1, 1), (w, 0, 0), (w, w, w) and (w, v, ), it naturally
reduces to parallel multisplitting Jacobi (MP), Gauss-Seidel (MGS), JOR (MJIOR),
SOR (MSOR) and AOR (MAOR) method, where MSOR method is the relaxed
parallel multisplitting method in [2]; MAOR method is the parallel multisplitting AOR
algorithm in {9]. Thus the MTOR-method is a improvement and an generalization
algorithm of [2] and [9]. Hence, a general series of parallel multisplitting method for

solving the system of linear equation (1) is formed, which makes the new method more
flexible and applicable.

3 Convergence of the MTOR Method

We first need to introduce several known concepts and useful lemmas.
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A vector x € R is called nonnegative (positive), denoted z > 0 (z > 0) if z; > 0
(z; > 0) holds for all components of z = (1,2, -,z,)T.

Similarly, a matrix A is called nonnegative, if all of its entries are nonnegative.

For two matrices we write A > B, when A—B > 0, and for two vectors z > y(z > y),
when z —y > 0(z — y > 0). Given a matrix A = (a;;), we define its absolute value by
|A} = (lai;|). It follows that |A| > 0 and that |AB| < |A||B| for any two matrices A
and B

For any matrix A = (a;;), such that a;; < 0for i # j and A™! > 0, A is called a
M-matrix (see [8]).

For any matrix A = (a;;) € R™", we define its comparison matrix (4) = ({(a;))

by
laij |a if i=j
Qi) = . .
{aig) { —lai;l, if iF£]
A matrix A is called H-matrix if its comparison matrix < A > is an M-matrix.
Now we introduce several useful lemmas.

Lemma 1 [2] Let A be an H-matriz, D = diag(A), and A= D — B, then
(1) A is nonsingular.

(2) |471] < (4)~1

(3) |D| is nonsingular and p(|D)™!|B|) < 1.

Lemma 2 [8] Suppose A, B satisfy |A| < B, then p(A) < p(B).

Lemma 3 [8] Suppose that A is a nonnegative irreducible matriz. Then the spectral
radius p(A) of A is an eigenvalue of A and the eigenvector © corresponding to p(A)
satisfies z > 0.

Theorem 1 Suppose that A is an H-matriz, with a multisplitting
(D — Ly — Fy,U, Ey), k=1,2,--- K

such that
(A) = |D| — |Lg| — |Fx| — Ug| = |D| - | B|

where D = diag(A) is n X n, diagonal and nonsingular, each Ly and Fy, is a strictly
lower triangular matriz, each Uy, is a zero-diagonal matriz. Then MTOR method (5)
converges for any starting vector z° € R™ provided that the parameters w,a, B satisfy

2
0<a,fB<Lw, I<w< +————rxr. 5
<o p T+ (D 2B ®)
Proof. Since p(Tmror(w,a,B)) < p(Tmror(w,a,H)|) by Lemma 2, where
Turor(w,a,B) is the iteration matrix given by (3), we only need to show that

p([Tmror(w, ., B)l) < 1.

As A is an H-matrix, D is a diagonal matrix, L and Fj, are strictly lower triangular
matrices, we easily see that D — aL; — 3F}, are H-matrices for k = 1,2,---, K. Using
the result (2) of Lemma 1 and the definition of comparison matrix, we get

|(D — aLy — BFx) ™| < (D — aLy = fFy) ™' = |D| - a|Ly| — B|Fy|.
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First let the inequalities 0 < a < w,0< f <w, 0 <w <1 hold.
For k =1,2,---, K, we define the matrices

My = |D| — a|Lg| — B| Fkl, (6)
and
Ny = (1 = w)|ID| + ( = a)|Lg| + (w — B)| Fie| + w|Us]- (7)
From (6), (7), we obtain
N} = My, — w|D| — w|B| = My, — w(|D| — |B|). (8)

We take absolute values of both sides of (3) and obtain

K K
[Trror(w,0,8)) < D ExM NI —w " ExM'|D|(I - |DI™Y|B).  (9)
k=1 k=1

Let e = [1,1,---,1]T € R™. Since |D|™!|B| is nonnegative, the matrix J, =
|D|~1|B] + eeeThas only positive entries and is irreducible for any € > 0. By Lemma 3,
we known that p(J.) is an eigenvalue of J. and the.corresponding eigenvector z. > 0
satisfying

Jeze = (|D|7YB| + eeeD)z = p(Jo)xe.

Moreover, since 0 < w < 1, we have
1-w+wp(DI™YB)) < 1.
By the continuity of the spectral radius, we also get
l-w+wp(J) <1 (10)

if € > 0 is sufficient small.
By (9), we have

K
ITrror(w, o, B)| < I ~w | ExMg DI — (|D|™|B]| + eee”)]
—1

K
=I-w) EM; DI - J.) (11)
k=1
and by multiplying by z.,
K
ITuror(w, @, B)lze < 2 —w Y ExM;|D|(1 - p(J.))a. (12)
k=1

From the definition of My, the M} are H-matrices. By Lemma 1, we get

M, <|D|, M;'>|D|™%
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By (10) and (12), we have

K
(Turor(@,7, M. < o= w3 EDI DI - p(7e))a.
k=1
=1 ~w+wp(Je))ze < ze. (13)
By exercise 2 of [8], p.48,
p(Turor(w,a, B))) <1

holds.
Next let the inequalities 1 < a <w, 1< < w, 1 <w < 2/(1+ p(|D|~}B|) hold.
We define matrices

N = (w=1)ID| + (@ — 0)|Ls| + (@ — Bl Fx| + w]Us|. (14)
From (6) and (14), then
N = My, - [(2 — w)|D| —w|B|]. (15)

We take absolute values of both sides of (3) and have

K K
ITvror(w,, M) < D ExM{'NE < I-Y " ExM*D|[(2 - w)I —w|D|[B[|. (16)
k=1 k=1

As in the previous proof, let e = [1,1,--+,1]7 € R" and let z. > 0 denote the vector
satisfying J, = (J + eee?)z. = p(Je)z., where ¢ > 0 is sufficiently small such that
w—14+wp(J) < 1,since 1 < w < 2/(1 + p(|D}|~1|B)).

From (16) we get

K
[Turor(w,e,8)| 1= ExMi D2 - w)] —wJ] an
k=1

and multiplying by z., then

K
[Trror(w, e, B)lze < T — ZEMD['HDI[Z —w — wp(Je)]z.
k=1
= Z—[2—w—wp(J)]ze = [w -1+ wp(Je)]z.

<  Te.

Thus p(|Txror(w, o, B)]) < 1 follows again by exercise of [8], p.48.
Under the assumption of the theorem, this completes the proof.
Theorem 1 implies the following Corollaries

Corollary 1 Under the conditions of Theorem 1, the MSOR method converges to
the unique solution x* € R™ of the system of weakly nonlinear equations (1) for any
starting vector z° € R™ provided that the parameter w satisfies

2

T+ (DB (18)

O<w<
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Corollary 2 Under the conditions of Theorem 1, the MAOR method converges to
the unique solution z* € R™ of the system of weakly nonlinear equations (1) for any
starting vector x° € R® provided that the parometer w satisfies

2

0<y<w,0<w< — . 19
! T+ (D1 [B) (49

4 Block MTOR (BMTOR) Method
By splitting the number set {1,2,---,n} into K nonempty subset J; (k =1,2,---, K),
ie.

Jk - {1,2,"',774}, Ui(zljk = {172,’”',”} k= 1727"'7K7
we define the splitting matrices corresponding to the nonsingular matrix A € R**"
as follows:

D =diag(A), D is nonsingular

af;, 1< <[if2] i,5 € Ji
= zj
Ly = (1) { 0, otherwise (20)
, B/l<ji<i i,jedi
ajj
= (i 1.7) { 0, otherwise @)
I .7 =1
Up = (U’U) { ~(aij +l” + ’;) , otherwise (22)

with
A=D—Lp—F, - Uk, k=1,2,--- K.

Here [a] is used to denote the integer part of a positive number a. The nonnegatlve
diagonal matrices Ey (k= 1,2,---,K) are introduced with ef > 0 for i’ € Ji, ef = 0

for i ¢ Ji, and Z Ey, = I (identity matrix).
With these matrzces, a block multisplitting of the matrix A results and denoted by

(D — Lg - Fy, U, Ey), k=1,2,---, K.

Now we construct the block MTOR (BMTOR) method for solving the system of
linear equations (1) as follows:
BMTOR method

For any starting vector z° € R™, form =0,1,2, - - -, until convergence

K
= Z Ekwm’k
k=1
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where

k mk k mk
@y F-a Z 7% — B Z fie;

1<5<[i/2] [i/2]<i<n
=(1-w)ayz! + (w — ) Z lf] z7
1<5<[i/2]
+ (w—p) Z f,’}z;"+w2ufjx;”+wbz,z’e!]k
[1./2]<J<n

m-+1 _ k mk -
z; E e, , $=1,2,-- n.

Here a, 5 > 0 are relaxation factors and w > 0 is an acceleration parameter.

The BMTOR method is a block MTOR method for numerically solving the system
of linear equation (1) in synchronous parallel environments. For different k, the lower
dimensional systems of equations (whose dimensions equal the number of elements
included in the Ji) corresponding to the k-th splitting can be solved on the k-th
processor of a multiprocessor system. A convergence theorem of the BMTOR method
can be obtained in a similar way as for the MTOR method, so we will not demonstrate
it here in detail.
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