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1 Introduction

We consider the efficient solution of dense linear systems Au = f by a preconditioned
iterative method, where A is a n x n dense and unsymmetric matrix, and show that
domain decomposition leads to a construction of practical preconditioners. Such linear
systems arise from the solution of boundary element equations.

The boundary element methods (BEM), as a powerful alternative to finite element
methods (FEM) and finite difference methods (FDM) for solving partial differential
equations (PDE), are usually applied to PDE’s with known free-space Green's
functions; see [3]. However recent developments suggest that BEM can also be
successfully applied to the solution of more general PDE’s; see [11].

As far as the iterative solution is concerned, its success largely depends on the
spectral properties of the integral operator or of the matrices of discrete linear systems.
More precisely, if the underlying operator is smooth and compact, iterative methods
can be very efficient without preconditioning; see [1], [4] and [5]. This paper addresses
the case of a non-compact operator, where preconditioning is essential for iterative
methods.

In the literature, work on preconditioning singular boundary element equations has
mostly been based on ‘algebraic considerations’. The underlying ideas fall into two
main categories, a) design a preconditioner that can be inverted or solved easily, and
contains or somehow represents the dominant part of contributions due to singular
integrals; b) design a preconditioner that is sparse and somehow ‘close’ to the inverse of
the coeflicient matrix A. Essentially efficiency is the chief consideration and naturally
the preconditioners suggested are often sparse; refer to [2], [6], [7], [9] and [10] among
others.

In this paper, we propose to construct preconditioners for the singular integral
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operator equation first, based on boundary domain splitting, and then proceed with a
construction of preconditioners for the dense linear systems. Using this new and general
framework, we can show that several preconditioners in the literature are related. Our
theory provides a justification for these preconditioners and points out a way toward
new designs and further modifications. Some numerical results are reported.

2 Boundary elements and dense linear systems

Let © € R? denote a closed domain that may be interior and bounded, or exterior and
unbounded, and T' = 9Q be its (finite part) boundary that can be parameterised by
p = (x,y) = (£(s),y(s)),a < s < b. Then a boundary integral equation that usually
arises from reformulating a PDE in  can be written as

u(p) - /F R, u(@)ds, = f©),  pel, (1)

’ b
or u(s) — / k(s,tyu(t)dt = f(s), s € [a,b), (2)
or simply (I-Ku=f. (3)

To solve the above equation numerically, we divide the boundary I' (interval [a, b))
into m boundary elements (non-intersecting subintervals E; = [si—1,5:]). On each
interval E;, we may either approximate the unknown u by an interpolating polynomial
of order r that leads to a collocation method, or apply a quadrature method of r nodes
that gives rise to the Nystrém method. Both discretization methods approximate
equation (3) by

(I - ’C'n)un = f, (4)

where we can write

m T
Kou = Kpu, = 2 [Z ‘wik’(sptﬁ)uﬁ} v un(tj) =ulty) =uj, and n=mr

4=1 Li=1

We use vector u to denote u;;’s at all nodes. By a collocation step in equation (4),
we obtain a linear system of equations

(I-Ku=f, or Au=f, (5)

where matrices K and A are dense and unsymmetric (in general). The conditioning
of A depends on the smoothness of kernel function k{s,t). A strong singularity (as
t — ) leads to non-compactness of operator K and renders equation (5) difficult to
solve by iterative methods without preconditioning.

To gain some insight into preconditioning, we may describe a BEM procedure as an
interaction of three stages, each respectively characterized by

(1). Integral Operator K \

(2). Approximating Integrals (K, u,)(s) \
‘ (3). Matrix Elements of K J
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Then stages 1 — 2 — 3 represent the well-known (standard) BEM procedure. The
simple fact is that any undesirable spectral properties of K (stage 3) must stem from
the integral operator K (stage 1), although we need preconditioners for A (in stage
3) and we see that singularities tend to dominate integrals (in stage 2). Therefore we
propose to exploit stages 3 — 2 — 1 in search of a better preconditioned problem to
work with or a general theoretical framework.

We remark that most preconditioners in the literature exploit stages 3 — 2 only.

3 Preconditioning techniques

We shall review three important preconditioners for solving Au = f and illustrate
each case by a 9 X 9 system.

3.1 Two grid based sparse column preconditioners

The success of this preconditioner, due to Yan {10}, follows from the facts that a n xn
sparse column matrix B with m nonzero long columns has its inverse of the identical
sparsity and a system such as Bz = y for z,y € R" can be solved in only (n — m)m
operations. For example, with n =9,

X

X

X

&
Il
X X X X X X X X X
X
X X X X X X X X X
XX X X X X X X X

Formally, let n = nm with 5, m integers. Then from matrix K = (k{, k2, .kn),
construct column vectors by

B — ki, if i=/fn, 1<£E<m,
©T 1 0, otherwise,

and define a new matrix by K’ = (k},kb,---, k). Then we use A’ = (I +nK') as a
preconditioner. It may be expected that A’ is ‘close’ to A = A, because A’ = A,
which is the corresponding discrete matrix with m nodes.

3.2 Mesh neighbour based approximate inverses

The starting point in the mesh neighbour preconditioner of Vavasis [9] is that we hope
to find a matrix such that PA =~ I and this P should have its diagonal elements
and immediate neighbours possess more importance as A usually comes from singular
integral equations. In particular, assume that P is a quasi-tridiagonal matrix; forn = 9
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we have
X X X
X X X
X X X
X X X
P= X X X (6)
X X X
xX X X
X X X
X X X

Then to find PY = (py,p2,---,pn) in terms of A = (a1,az,---,a,), a direct approach
isused. Let PA=1 <= ATPT =1 <= ATp; =e;. Then, as p; only has three
nonzero positions p;, , pi,, Pis, an approximate solution is obtained by solving a 3 x 3
system

O Piy 0
X X X pi, |=11
X X X Pis 0

3.3 Sparse LU decompositions

Similar to the idea of §3.2, the work of [2] assumes that preconditioner B should have
its diagonal elements and immediate neighbours possess more importance for the same
reason that A usually comes from singular integral equations. When n = 9, such a

matrix B is of the same sparsity as P in equation (6).

As B™! cannot maintain any sparsity property of B, it is proposed. in order to
solve Bz = y for z,y € R", to decompose B as B = LU, where L and U are sparse
triangular matrices. To illustrate, for n = 9, we have

P,
Py Pop
Pso Psg
Py3
B=LU =
Pyy Pyy Py
1 P1‘2
1 Pys
1

Pyy
Psy Pss
Pss FPsg
P Py
Pyr
Pyy Pys Pyg Por
Py
1 Pys
1 Psg
1 Py

By
Py 3

Py
Py
Py g
Py
Py
Py
Fyg
Pry
Pyg
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A general algorithm is given as follows (Calculation of LU)
Py =By, P,y =By, P,1=B8B,1,
Pry=B12/Bi1, Piy=DBin/Biri, Paa=DBos—Bs1Pia, Pog=—-B,.Po,
5= Bn,,lpl.'n,
FOR 1=2:n -2
Piiy1 = Bii11/ Py, Piy = =Bii—1Pi_1n/Pii
Pit1i+1 = Biyii+1 — Biy1,iPrit1, Ppit1= = PP
s=s+ P/L.i-Pi,n
END
Rl..‘n——l = PIL,’IL"l + B7L.7L—17 Pn—Ln - (B'n,—l.n- - Bn—1‘7L—2P71.~2,'n,)/Pn—l.n—la
-Pﬂ..,’IL - nan P?’L,’IL—I'P’IL—-I,’H — 8.

A related algorithm, needed at a preconditioning step, for solving a system Pz = yis

Forward substitution :

2 =y1/Pra, s=F,,
FORi=2:n—-1

2 = (y;i — Pii—12i-1)/ P, s§=5+ Ppizi
END

Zp = (yn - 5)/13n,n-
Backward substitution :

Tn = Zn, Tp-1 = 2Zp_1 ~ P nZn,
FORi=n-2:~-1:1
zi = 2z — P ia®ipy — Pintn,

END

In this paper, one of our aims has been to offer a new understanding of the above
otherwise heuristic sparse preconditioners appeared in the literature. This is to be
achieved by use of operator splittings or domain decomposition.

4 Operator and domain splitting

Here we introduce the idea of operator splitting that was originated in [7]. Use the
partition of §2, [a,b] = I, F;. Accordingly we can partition variable u and vector u
as follows u = (u1,u2, -+, up)T and u = (uy,uy, -+, u,,)7.

Similarly operator KC is partitioned into a matrix form and further we can observe
that all singularities of KC are contained in the following operator

Ki1 Ko Kim
K1 Koo Kas
IC = ’C3’2 ’
’Cm—Lm

]Cm,l Icm,m—l K:m,m
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The corresponding matrix out of K is

Byl,l Kl,? Kyl.m
Koy Kaa Kags
K‘ = K3.2
- T Bym—lgm
Km..l Km.m—l Km.m

Define operators D = I—K and C = K—K, and matrices D = I— K and C = K-K.
Then it can be shown that operator D is bounded and C is compact. So operator D~1C
is also compact. Thus the solution of Au = f is reduced to that of [/ —D"IC]g =D f
Here D is in general a block quasi-tridiagonal matrix and the solution of Dz = y should
similarly follow §3.3.

While it is now natural to use D as a preconditioner, we may conclude that an
efficient preconditioner should contain D or its close approximation. Following [7], we
may further show that Dy = diag(D) is also an efficient preconditioner.

5 Interpretation of preconditioners

We now use the theory of the above section to identify the operator splittings implied
in the preconditioners of §3.

Firstly we see that the preconditioner of [10] uses the following splitting X = D+C,
where D = I -K with K = (K;;) and K;; = ¢ ij/n k(s, t)u;(t)dt ~ ij k(s, t)u;(t)dt =
Kij. Theoretically C is not compact but C should approach 0 if m, n — co. Practically
n should not be too large (then the method becomes more expensive if m = n).

Secondly, for the preconditioners of [9] and [2], the underlying splittings would be
identical to that in the last section for piecewise constant approximations or the panel
method (mid-point rule). The reason is that both were proposed based on assumptions
on stage 2 (regarding singular integrals rather than operators).

6 Numerical results
The first problem to be tested has a weak singularity (see [10])

Problem 1 : u(s) +7/j u(s)b(s, t)dt = f(s), s € [—m, ]

which arises from the solution of the exterior Neumann's problem of the Laplace

equation (when v = 1) over an elliptic boundary p(s) = (cos(s), sin(s)/4). Here the
kernel function is

b(s, 1) = 20 () - nlp)Ip' ()] _ 4

wlp(t) — p(s)|? ~ (17— 15cos(t + 5))
The parameter v is included to vary the difficulty of the problem. We specifically
choose f(s) = |[sin(s)] + 2v{4cos(s)log[(17 + 15cos(s))/(17 — 15cos(s))] +

17sin(s) tan~"(15sin(s)/8)}/(157) so that u(s) = | sin(s)|.
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Table 1 Convergence results of Problem 1 (y = 10)

| Method || Diagonal [7] | Inverse [9] | LU [2] Mod LU [2] | Two grid [10] Mod TG [10] |

N=16 6 6 23 26 7 13
N =32 12 10 10 38 17 31
N = 64 17 15 10 45 34 65
N =128 18 19 13 45 41 80
N =256 19 20 13 41 50 87
N =512 18 20 14 40 53 89
N =1024 18 19 16 39 55 92

Table 2 Convergence results of Problem 2

Method || Diagonal [7] | Inverse [9] | LU [2] Mod LU [2] | Two grid [10] Mod TG [10] |

N =16 9 14 10 12 25 16
N =232 10 18 19 16 50 22
N =64 11 20 36 26 98 30
N =128 11 23 71 36 194 41
N =256 13 26 144 48 386 56
N =512 14 27 291 57 770 75
N =1024 14 30 599 62 1538 93

The second problem possesses a Cauchy singularity (see [7])

1w 1 2 _ 232
Problem 2 : % f—l (ttli(t) dt + f—l (tt2+zw2) w(t)d(t)dt = f(x),
111, w(t)g(t)dt =0, z e (~1,1),

which has the exact solution ¢(z) = z|z|.

Both problems are discretized by the Nystrém method using uniform nodes for
Problem 1 and Chebyshev nodes for Problem 2. The conjugate gradient iterative
method to the normal equation (CGN) is adopted; see [8]. The tolerance for residual
errors is set to be TOL = 107 where J = 1 + log(/N)/log(2). Results are shown
in Tables 1-2 of comparisons of six preconditioners, where ‘Mod’ means a modified
version and the modifications are based on discussions of last two sections.

Although further and more extensive tests are needed to compare these
preconditioners, our preliminary conclusion is that for singular boundary element
equations, the most robust preconditioner is that based on boundary domain

decomposition [7].
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