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ABSTRACT

In this paper we describe recent development of domain decomposition methods
and multilevel preconditioners for solution -of the discrete systems which arises
from the application of nonconforming and mixed finite element methods to partial
differential problems.

1. INTRODUCTION

A lot of numerical methods for solving partial differential problems have been devel-
oped in past years. Among the most popular and often used methods are Galerkin
finite element methods, finite volume methods, and mixed finite element methods.
The mixed methods have certain advantages over the Galerkin methods and the
finite volume methods [3]. In particular, they preserve mass element by element,
and produce a direct and accurate approximation for the vector unknown of the
differential problems, which is the variable of primary interest in many applications
such as the velocity field in the flow equation in highly heterogeneous media [16]
and the electric field in the potential equation in semiconductor devices [5, 7, 8].
Due to their saddle point property, it is known that the linear systems arising
from the mixed methods are generally harder to solve than those arising from com-
parable Galerkin methods. In particular, there has been little theory for construct-
ing good preconditioners and developing efficient domain decomposition methods
for solving the systems of algebraic equations arising from the mixed methods. An
alternate approach was suggested by means of a nonmixed formulation. Namely,
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it has been shown that the mixed finite element methods are equivalent to a mod-
ification of nonconforming Galerkin methods [1, 2, 4, 18]. The nonconforming
methods yield a symmetric and positive definite problem, which can be more easily
solved using domain decomposition methods.

The purpose of this paper is to describe recent development of domain de-
composition methods and multilevel preconditioners for solution of the discrete
systems which arises from the application of nonconforming finite element methods
to partial differential problems. Then, based on the equivalence mentioned above
between the mixed and nonconforming methods, we discuss the domain decomposi-
tion methods and multilevel preconditioners for the mixed methods for the partial
differential problems. In the next section we consider the domain decomposition
methods, and then in the third section we present the multilevel preconditioners. In
the final section we discuss the equivalence between the mixed and nonconforming
finite element methods.

2. DOMAIN DECOMPOSITION METHODS

Let, §2 be a bounded domain in R?, and let N}, be a nonconforming finite element
space associated with a triangulation &, of {2, where h is the discretization pa-
rameter. We are concerned with the approximate problem: Find up € Nj such
that

(2.1) an(up,v) = (f,v), Yv & Ny,

where the bilinear form ax(-,-) is assumed to be symmetric and positive definite,
(-,-) denotes the L?(2) inner product (for simplicity), and f € L2(£2). Tt is well
known that the linear system arising from (2.1) is not well conditioned. The aim
of this section is to develop an additive Schwarz algorithm for (2.1). For this, let
{0; }:1-7:1 be an overlapping domain decomposition of {2 with the overlap parameter
6. The decomposition is assumed to align with the boundary 042. Associated with
each £2;, let N} be a nonconforming finite element space of the same form as Np,

whose elements have support in £2;. The finite element space Ny, is assumed to be
represented as a sum of J + 1 subspaces:

(2.2) Np=Ny+Nt+...+ N/,

where N} is a so-called coarse space. We now define the operators II; : N, — N, ,’;,
§=0,1,...,J,by

(2.3) an(ITw,w) = ap(v,w), Vw e N},
and the operator II : N, — N3 by

(2.4 n=31,

In (2.3) we could use so-called inexact solvers; the analysis is the same. We now
define a Schwarz algorithm for (2.1).

Additive algorithm. The additive Schwarz algorithm for (2.1) is given by

J
(2.5) Hup = fr, fo=)_F

j=0
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where f; € Nj satisfies
an(fij,v) = (f,v), WeEN], j=0,1,...,J

Note that (2.1) and (2.5) have the same solution. The following abstract con-
vergence result for bounds on the condition number of II can be found in [17)].
Assume that

(A1) There is a constant C such that every v € N, can be represented by v =
E}'Lo v; with v; € N} satisfying

J
Z ar(v;,v5) < Cap(v,v).

=0
(A2) Let k = (ki;) be a symmetric matrix with k;; > 0 satisfying
lan (vi,v;)| < Kijan(vi, v:) 2an(v;,v:)Y?, Yo, € Ni, v; € NI, i,j=1,...,J.
Then we have
Amin (1) > €74 and Apax (IT) < p(k) + 1,
where p(x) is the spectral radius of «.
‘We now apply the above theory to analyze a couple of examples.
Example 2.1. Let Np be the P, nonconforming finite element space of the
second order elliptic problem in R?. That is,
Ny = {v € L*(2) : v|g € P(E), VE € &,; v is continuous at the midpoints
of interior sides and vanishes at the midpoints of sides on 042},
where &, is a partition of {2 into triangles. We need to assume a structure to our
family of partitions. In the first step, let £y be a coarse triangulation of {2 into
nonoverlapping triangular substructures {2, j = 1,... ,J. Then, in the second step
we refine £x into triangles to have a triangulation &£, h < H. Finally, let {§2; }3‘7=1
be an overlapping domain decomposition of {2 by extending {2; with the overlap
parameter 6 defined by
8 = min{dist(812; \ 602,002, \ 8§2),j =1,...,J}.
Finally, define the coarse space
(2.6) NP ={v € Ny, :v = Rpp, p €U},
where R}, is the nodal interpolation operator into Ny, and Up is the P;-conforming
space associated with £x. With these choices, it follows from the above abstract
result [15] that the condition number c(II) of IT can be estimated by
(2.7 (Il = O(1 + H/8).
Example 2.2. Let Nj be the rectangular nonconforming finite element space
of the second order elliptic problem in R?. Namely,

Np = {§;§|E =ak +abz +aly +ak(a® —y?), ah € R, VE € &;

if By and E, share an edge e, then /g]aEl ds = /ElaEz ds;
(-1 €

and / Elagn dSZO},
BENSR
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where &, is a partition of {2 into rectangles. The overlapping domain decomposition
{12;}]_, and spaces {N; #}/-1 can be similarly defined as in Example 2.1. Finally,

the coarse space is defined as follows. Let &;, be the triangulation of {2 into triangles
obtained by connecting the two opposite vertices of the rectangles in &£,. Associated
with &, let N, be the P; nonconforming finite element space in Example 2.1. Then
we define the operator 7y : N, h— Np by the relation: If v € N, and e is an edge of
a triangle in Np,, then Zpv € Ny, is defined by

1 - 1
—(Zpv,1)e = (v, De.
!el( Y, )8 ,e, (’U, )e
Now we have N

NP ={v € Nj, : v = Rnp, ¢ € N}},

where N D is given as in (2.6), and Ry, is the interpolation operator into Nj. The

result (2.7) can be shown here by means of the operator Zj, introduced above.
Other choices for N in Examples 2.1 and 2.2 can be made [12]. It follows
from (2.7) that if we use a generous overlapping, then the condition number of IT is
uniformly bounded. With the same technique, two-level multiplicative algorithms
and multilevel Schwarz algorithms can be developed [12, 21]. Moreover, exploiting
the equivalence between the nonconforming and mixed methods [6, 10, 12, 13]
(also see the fourth section), the Schwarz algorithms can be applied to the mixed
methods [3]. Fourth order problems can be also analyzed using the present theory.

3. MULTILEVEL PRECONDITIONERS
Let
Ng—+ Ny —---—=> Ny

be a sequence of nonconforming finite element spaces associated with a increasing
sequence of triangulations of 2 such that there is an intergrid transfer operator
between two adjacent spaces:

Ij:Nj_l-—-)Nj, i=1,...,Jd
We are again concerned with the approximate problem: Find uy € Ny such that
(3.1) aJ(UJ,U) = (f, U), Vv € Ny,

where a;(-,-) is assumed to be equivalent to a discrete energy scalar product (-, )¢
on Ny:

(3.2) ay(v,v) = |[v||%, Yve Nj.
We define the operators R; : N; - Ny by

Ri=ILI;_y-Ijy1, j=0,...,0—1
Let {b;(-,)}/=o be a family of bilinear forms defined by

bj(v,w) = o5(v,w), VYv,w€ Nj,

where the positive constants a; are determined by the (inverse) inequalities

wllz < o5llv]|?, YweN;,j=0,...,J.
Finally, introduce the operators T9 : Ny — N; by

b;(T9v,w) = as(v, Rjw), Yw e N;,
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and the elements f/ € N; by .

b (f,w) = (f, Rjw), Vw e N;.
Now it can be seen that the problem (3.1) is equivalent to
(3.3) Pyuy = fg,
where

J J
Pr=Y RiT%, fr= Rifl.
j=0 7=0
Assume that (3.2) and the following condition are satisfied:
bj(v— I Pj_yv,v — I;P;_1v) < Cyllv — I; Pj_1v)|%, Vv €N,
where the operators P;_; : N; — N;_; are given by
(Pj__lv,'w)g = (’U,w)g, Yo €N;q,j=1,...,J.

Then we have the following abstract result on the condition number of Py [14, 19]:

J
(3.4) C, jmax 7 < e(Py) < C*Cs Y

Jj=0
where the constants C, and C* are independent of j and
73 = sup{||Rv[[Z/|[v||Z, v € Nj, v # 0}.

We now again consider the two examples presented in §2. Let hy and &, =
& be given. For each integer 0 < j < J, let h; = 279hg and &, = &; be
constructed by connecting the midpoints of the edges of the triangle or rectangle
in &_;. Associated with each &;, let V; be the nonconforming space defined as in
Example 2.1 or Example 2.2. The intergrid transfer operators I; : N;_; — N; are
defined in the usual way by nodal or edge value averaging procedures [6]. Then,
using the result (3.4), we have for both examples:

c(Py) = O(J).

Finally, thanks to the equivalence between the nonconforming and mixed fi-
nite element methods (see the next section), the theory presented in this section
applies to the mixed methods [11], where algebraic multilevel preconditioners for
both nonconforming and mixed methods are also constructed. Fourth order dif-
ferential problems can be also analyzed using the present theory. Due to the page
limitation, numerical results are not shown here; please refer to [11, 12, 14, 19]
for the numerical results on the domain decomposition methods and multilevel

preconditioners.

4. MIXED FINITE ELEMENT METHODS

‘We concentrate on the model problem

-V -(aVu)=f inf2,
(4.1) u=0 on 8f2.
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The Raviart-Thomas space [20] over triangles is given by

Ap = {v € (L¥(W)? :v|p = (a} + oz, o+ ay), db € R, E € &},

Wy, = {w € L?() : w|p is constant for all E € £},

Ly = {p € L*(O&p) : ple is constant, e € dp; ple =0, e C o},
where O), denotes the set of all interior edges. Then the hybrid form of the mixed
method for (4.1) is to seek (op, un, An) € Ap X Wi X Ly, such that

Yoree,(V-on,w)e = (fiw), VweW,
(4.2) (aon,v) — Y gee, [(un, V- v)E — (An,v-vE)ag] =0, Vv €&Ap,
Y pes, (On vE,Wog = 0, V p € La,

where vg denotes the unit outer normal to E and « = o L.

introduced to approximate the vector field

The solution oy is

o = —aVu,

which is the variable of primary interest in many applications. Since o lies in the
space

H(div; Q) = {v € (L*(2))* : V-v € L*(Q)},
and we do not require that A; be a subspace of H(div;Q), the last equation in
(4.2) is used to enforce that the normal components of o}, are continuous across the
interior edges in 8&p, so in fact o, € H(div; 2).

There is no continuity requirement on the spaces Ap and Wy, so oy and up
can be locally (element-by-element) eliminated from (4.2). In fact, from [6], (4.2)
can be algebraically condensed to the symmetric, positive definite system for the
Lagrange multiplier Ap:

(4.3) MpAp = Fh,

where the contributions of the triangle E to the stiffness matrix M} and the right-
hand side F}, are

Zi . f =i
E_VgE 'V (aJg, 7p)E i
(4.4) mg; = @ 1)5 , Ff= —(—51)—12“ + (J};’V%)eg,

where v}; denotes the outer unit normal to the edge e, 7% = |el|vs;, lek] is the

length of e, J}; = (f,1)e(z,y)/(2|E|), and |E| denotes the area of E.
Let P, denote the L?(Q) projection operator onto Wy, ap = Ppa, and fr =

P, f. Also, set
fule = —JZ (3 e ) |2,
Qp

and
@, 0) = D (a5 Vi, V)b,
. E€tn
Then as shown in [6], the system (4.3) corresponds to the system arising from the
triangular nonconforming finite element method: Find v, € Nj such that

(4.5) @n(¥n, @) = (Frr ), Ve € Ny,

where N}, is defined as in Example 2.1. Hence the previous methods can be used to
solve (4.3), i.e., the mixed method (4.2). It should be also noted that the natural
degrees of freedom, i.e., the values at the midpoint of edges of I, and Nj, are the
same.
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After the computation of A\, o4 and uy (if t}fy are needed) can be recovered
Ems] follows. Set op|r = (ag + bez,cp +bpy) and fp = fnlE- Then it follows from
6] that

b = L,
- __1 3 i) Lt
aE s \i=1 l€BlvE " Anles, + F(a,2)m ),
3 i 1..4(2 7
g = _(a',ll)E (Ei:l Ie?EIVZE( )Ahle% + iéa(aay)E') )

and

1 3 .
'U'h‘E = -2|—E|— (O‘Uha ($’y))E + i—zl/\hlefg ((IE, y)vy'llf)efg , BE€ gh-

We now consider a modified version of the mixed method (4.2) in which the
coeflicient o is projected into the space Wy, [9]: Find (o, up, An) € Ap x Wy, x Ly,
such that

Ypee, (V- on,we = (f,w), YweW,,
(ahah7v) - ZEEEh [(u’hv : U)E - ()‘hxv : VE)aE] =0, Yve Ah;
ZEEgh(ah -vE, ag = 0, V€L

Associated with this projected formulation, the linear system has the form in place
of (4.4):

77 f =i
E_”Z*'VJE e Up7p)E foiN
(46) ms; = m: Fz = _T + (JE’VZE)e}E7 Eeé.
The corresponding nonconforming system becomes: Find 4, € Ny, such that
(47) dh(d)h:(p) = (fha(p)v VQDENh

The present systems in (4.6) and (4.7) are simpler than the corresponding systems
in (4.4) and (4.5). The advantage of the projected mixed formulation over the usual
one is more obvious for the mixed finite element method over rectangles [6]. The
three-dimensional case can be considered similarly.
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