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1 Introduction

Domain decomposition methods are appropriate to address fluid dynamical problems,
especially in complex physical regions and within parallel computational environments.
The zonal approach generally consists of partitioning the whole region into subregions
of simpler shape, and then reduces the given flow problem to a sequence of subproblems
which, to some extent, can be solved simultaneously.

Recently, a mathematical analysis has been carried out in [1] for hyperbolic
systems of conservation laws (e.g., Euler equations for compressible inviscid flows). A
generalized Stokes problem and an inviscid generalized Stokes problem are addressed in
[2] and [3] in the framework of a domain decomposition method, in which the physical
computational region €2 is partitioned into two subdomains (}; and Q3, and correct
transmission conditions across the interface I' between ; and Q2 are provided. An
iterative procedure involving the successive solution of two subproblems is proposed,
and the convergence for the iteration-by-subdomain algorithms, which are associated
with various domain decomposition approaches, is proved.

Quarteroni et al [3] consider the following generalized Stokes equation

{aa+divu=ginﬂ (11)
au—yAu+pVe =finQ ’

where ) is an open two-dimensional domain, a, 3, are positive constants, and g and
f are given scalar and vector functions, respectively. The unknowns are o, which is a
scalar related to the flow density, and the velocity vector field .

In this paper, we consider the problem (1.1}, and solve it by domain decomposition
methods partitioning the computational domain © into m subdomains (m > 2),
and propose and analyze some parallel domain decomposition algorithms, and prove
that these algorithms are convergent. Furthermore, their convergence rates are nearly
optimal if problem (1.1) is discreted by finite elements, which shows that these
algorithms are very suitable for solving problem (1.1).

In this paper, ¢ will be a generic constant.
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2 The differential formulation of the problem (1.1)

We first give some notation. Let C°(Q) be the space of continuous functions on {2, let
H3(2) and H*(T')(s € R, T is a curve) be the usual Sobolev spaces, endowed with the
norm || - ||s,0 and | - ||s,r, respectively. For the seminorms, we use the notations | - |,
and |- |s r, for an open curve Iy contained in a closed curve I'. Let Hé({ 2 (T'o) be the set
of (generalized) functions such that their extension by zero onto I' belongs to H'/2(T)
and let (u,v)o = [, uvdzdy.

We restate the generalized Stokes problem as follows

{aa+divu=ginﬂ 1)
au—yAu+ Vo= fin |
This is an elliptic system. The boundary conditions for problem (2.1) are
wu=0onIp
U = U On I'yy (2.2)
S(u,0) = 6—u—,30n—00nI‘+
’ - 76’” - e}

where 90 =Tp UT L UTY.
The following result was proved in [2].

Theorem 2.1. Assume that f € H~Y/2(Q), g € L*(Q), ue € HY2(T'Z). The
problem (2.1). (2.2) has a unique solution (u,0) € H(Q) x L*(0) and

lullie + flollo,e < clllfll-1/2,a + ligllo,a + ”Uooﬂl/z,r;)-

Let
Vo={ve H (M) :v=00nTpUTlL}, Ty = L3(Q).

Then (2.1), (2.2) can be formulated as

{(u—Uoo)EVb, o€ Yy
al(u,0), (v,9)] = (f,v)e + B(g,¥)a, Y(v,p) € Vo x Ty

where Uy, is a suitable extension of s to Q satisfying U, € H(), Uy, =0 0onT'p
and ||Us|l1,0 < cHuooHl/zr;, al(u,0), (v,9)] = [ (aBop+ Bpdive + auv +yVuVo —
Bodive)dzdy

Remark 2.1. a[(u,0), (v,)] is continuous and coercive in V5 x I.

Now, we solve problem (2.3) by domain decomposition methods. 2 is decomposed
into two nonoverlapping subdomains, and we assume for simplicity that ue, =

0, I UT'p = 8Q. If this is not the case, we can argue in a similar way.
Define
Vi={ve H'(Q):v=00n 80N (T Ulp)}
Vou={weV,:v=00nT}, i=1,2

and the bilinear forms

(2.3)

a;[(us, 05), (vi, i)l = /Q (aBoip; + Bpidivu; + ouzv; + YVu;V; — Boidive; )dzdy
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which are continuous and coercive in V; x L2 ().
The first domain decomposition algorithm studied in this paper can be described as
Algorithm 1.
Given X° € H&éz )
Step 1. Compute (u},07) € V; x L?(f;) by solving the equations (¢ = 1,2)

{ai[(u?76;{l)? (’U,(,D)] = (f7 U)Qi +:H(ga (P)Qi (’U’ (P) € %,i X Lz(nt)

up =A"on T

Step 2. Compute (W}, ¥7) € V; x L2(£;) by solving the equation (i=1, 2)

—

2
ai[(w?1¢?)7 ('U, (P)] = E{aj[(u;‘,a;-‘), (’UJ'7 (pj)] - (fa vj)Qj - ﬂ(fh‘Pj)Qj})
j=1

|

Y(v, p) € V; x LZ(QZ): (vj7(noj) €V;x Lz(Qj):UJ'II‘ =vr,j=1,2.
Step 3. A"*1 = A" — p(w] + wP) on T, where p is a positive constant.
Remark 2.2. Obviously, it is true that
a; [(’u';'l: 0'?)7 (v17 901)] - (fa Ul)ﬂ,‘ - ﬂ(ga y’l)ﬂj
= aj[(”?y 0';'1)1 (’1‘)2, 972)} - (fa ”2)93' - ﬂ(ga ‘PZ)Q,"
V(v1,¢1), (v2,2) € V; x L2(Q;),v1|r = v2|r,j = 1,2. This implies that (wf,v¥}),
given in Step 2, is unique.
It is easy to see that Algorithm 1 can be implemented in parallel. In the following,
we analyze its convergence.

Theorem 2.2. There ezists a positive constant ¢ such that if 0 < p < ¢, then {(u?,
or), (u}, oF)} generated by Algorithm 1 converge to the solution of equation (2.3).

3 Domain decomposition algorithms for the finite element
problem

Let us first briefly recall a finite element approximation for the problem (2.3); see
[3]. Let T}, be a family of decompositions of  (which will be assumed hereafter to
be a polygon) into triangles A. Assume that T} is regular, i.e. there exists 75 > 0
independent of h such that

ha/pa <10, VAET,
where hp = diamA, pa = sup{2p|3zp € A : B(zo,p) C A}, h =maxha.
Define the following finite element spaces for r > 1
Voo = {v € C°() :vja € P,YA€Th,v=00nT,, UlB} 3.1)
{Eo,h ={p e L’(N) : ¢|a € Proy, VA €T}
where P, denotes the space of polynomials of degree < 7 on A, and consider the
following finite dimensional approximation to (2.3)

{ (un,0n) € Vo,n X To,n (3.2)
a[(un, on), (Wh, on)] = (F,vn)a + B(9,0n)e; V(vh,0n) € Vou X Top.
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Since a[(un,on), (vn,pn)] is coercive on Vg X g p, problem (3.2) has a unique
solution, and the following error estimate holds (see [16])

llw — unllna + llo —onllog < ch®(julstr0 +ols0), 0 <s<r

where (u, o) is the solution of problem (2.1). By assuming f € H-Y/2(Q), g € H*(Q),
we obtain u € H**+#(Q), o € H*(Q) for each 0 < s < 1/2. Higher regularity cannot be
expected for the solution of problem (2.1) endowed with the mixed Dirichlet-Neumann
boundary conditions (2.2). Hence it is safe to choose r = 1 in (3.1) and (3.2). So, in
the following, we set r = 1.

Decompose ) into nonoverlapping subdomains 4, ...,Q,,, and let
T=UZ,00:,\09, @, ={vlr:veWa}

Vin = {vlo; ;v € Von}, Tin={ploi:p€Topn}, i=1,...,m
V;?hE{'UIQi tv=0m o NT,veVypt, i=1,...,m.

Assume that the nonoverlapping subdomains {€;}™, satisfy

Al Q = U, ;, the sides of Q;(i = 1,...,m) follow the finite element mesh lines of
Q

}
A2. {Q,;}, are quasi-uniform quadrilaterals with size H.

For any i, trace average operator «; is defined by

Yup € Vo p,ai(vp) € D) and
1

a;(vp)(z) = §vh(m), V nodes x on dQ;\2, z which are not a vertex of &

a;(vp)(z) = %vh(x), V common vertex £ of N subdomains, = ¢ 9

a;(vg)(z) = 0 V node = on T'\&Q;

obviously

m
" au(wn) =Tr(vn), Von € Vo, (33)
i=1
where T'r(vp,) is the trace of v, on I
Now, we describe our parallel algorithm.
Algorithm 2.
Given XY € 9,

Step 1. Compute (ufy,,07,) € Vin X Tip by solving the equations

{ai[(uzh)a';th)7 ('Uha‘Ph)] = (fa 'Uh)ﬂi + ﬂ(g: ‘Ph)n; V(’Uh, QD},,) € V;?h X Ei,h
uly, = Aj on T'NIQ;

Step 2. Compute (wzh,llzgh) € Vi,n X X 5 by solving the equations

(WP Win)s (Whs 0n)] = Y _£a5{(uln, o24), Wi, 03] — (Frvim)e; — B9, Pin)a; }
i=1
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Y(vn,0n) € Vi, X B, (vj,h,(pj,h) € Vin X Xjn,vnlr = as(vn),j =1,...,m.
m
Step 3. ,\Z—H =Xt—p }:1 aj(w?,) onT, where pis a positive constant.
]:

Remark 3.1. (w},,%7,) in Step 2 has a unique solution, and Algorithm 3 can be
implemented in parallel.

Theorem 3.1. For Algorithm 2, there erists a constant T
1 <7< O((1+ H2)(1 + In*(H/h))

such that if p < 2/, then

DoMEEIZ < (A —-20+70%) Y (e, P2,
=1

i=1

4 The analysis of the preconditioner corresponding to
Algorithm 2

In Section 3, we have analyzed Algorithm 2, which is a preconditioned Richardson
iterative method. Our purpose in this section is to analyze the preconditioner related
to Algorithm 2, and to estimate the condition number of the preconditioned system.

It is known that Q@ = S(I — P)~! is the preconditioner in the iterative scheme
z™*tl = Pg™ 4 ¢ for solving system Sz = b. From the point of view of parallel
computation, the preconditioner @ should satisfy

1) Q! should be easy to obtain in parallel;

2) The condition number of Q1S should not be large.

Define discrete Steklov-Poincaré operator Sy, as

(Sudn,vn)a = Y ailEipAn, Binvn],  V(n,vn) € @4

i=1
and let (u j,,07,) € V3, x Ei,n, be the solution of

ai[(uzh70’;‘:h)7 (vha ‘Ph)] = (f7 vh)ﬂ.’ + ﬂ(gv ‘ph)ﬂn V('Uh) (Ph) € Vz?h X 2i,h

(br,vn)a = / ((f, Envn)a — al(u, o1), Bpvnl)dzdy, Yup € 85
0
where
(Ehvh)lﬂ; = Ly4,hUn, (UZJ’Z)IQ; = (“f,h:“f,h)

and
SpAnT = b (1)

Here by, € (3;,)' is an element in the space dual to ®5. For Sp, we have

Lemma 4.1. The discrete Steklov-Poincaré operator Sy, is symmelric and positive
definite, and the solution to (3.2) is given by (un,0n) = Epdnr + (4, 03).
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According to Lemma 4.1 and considering (u;] ;,07,), b can be obtained in parallel.
So, if A, can be solved, then we can easily obtain (up,04), which is the solution of
equation (3.2).

Algorithm 2 is an iterative algorithm to solve (4.1). Define the discrete Steklov-
Poincaré operator S; 5, by

(Si,nAnsvh) = i[EinAn, Bipvn], Vs, vp € Op.

As Sy, S;,; is symmetric and positive definite. Assume that R; is the matrix form of
the trace average operator «;(see Section 3). P is the iterative matrix of the iterative
scheme from A™ to A™** in Algorithm 2. It can be verified that

P=1I-p(> RiS;\RT)Sh.
i=1

It can be shown that @) has the form

Q'=p> RS;ET (4.2)

i=1

which is the preconditioner contained in Algorithm 3.
(4.2) shows that @ is symmetric and positive definite, and that @ satisfies property

1).

In order to show that @ satisfies property 2), we prove the following theorem.

Theorem 4.1. There exists ¢ positive constent ¢, which is independent of H and h,
such that

p< (ShQ@71ShAn, An)a
= (ShAn, An)e

Equivalently, the condition number of matriz Q~19; satisfies

K(Q71Sh) < O((1 + H™2)(1 + In®(H/h))).

<cp(l+ H™ (1 +1n*(H/R)), VA4 € &y

It is well-known that the conjugate gradient method(CG) is an efficient technique for
symmetric positive definite system, but its convergence rate depends on the condition
number of the coefficient matrix. So, Theorem 4.2 shows that the matrix @ satisfies
property 2). The above analysis shows that ) is an efficient preconditioner of Sj. It
will converge very fast when system (4.1) is solved by preconditioned CG.

5 Conclusions

In the above sections, we have studied the generalized Stokes problem using
multi-subdomain decomposition methods, and proposed and analyzed Algorithm
1, Algorithm 2, and Algorithm 3, and estimated the condition number of the
preconditioned system. The derived result shows that these algorithms are nearly
optimal and are efficient for solving the generalized Stokes problem.

Our algorithms are also suitable for domains with I'}) # # and the domain studied
in [2] and [3], with boundary condition (2.2).
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