Domain decomposition methods
for a three dimensional extrusion
model

Merete S. Eikemo ! and Magne S. Espedal

Abstract. An extrusion process in three dimensions is modelled, and gives rise to indefinite
block systems. The multi-scaled complex geometry involved in such a process is one of
the main motivations for making use of domain decomposition methods for this problem.
An overlapping additive Schwarz method will be used, which allows the possibility of
local refinement at locations where the system experiences large gradients. For a nonlinear
parabolic equation an alternating Schwarz method will be presented.

INTRODUCTION

The thermo-mechanical properties of aluminium during an extrusion process is
described by a coupled set of nonlinear partial differential equations. The model
consists of a temperature equation, a continuity equation and Navier-Stokes equations
with a nonlinear Zener-Holloman material law for velocities and pressure. In order to
support practical applications and being able to take into account the behaviour of
the aluminium as it flows through the complex geometry of a die, the model has to

be three dimensional.
The first three sections will briefly introduce an aluminium process, present the
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CONTAINER BILLET
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Figure 1 Aluminium extrusion process.

model equations and describe the solution procedure. The domain decomposition ideas
for the model and some numerical results will be given in the last two sections.

ALUMINIUM EXTRUSION PROCESS

A preheated aluminium billet is placed in a container. The typical initial temperature
is 450°C and the length of the billet is half a meter. At one end a die is placed, and as
a result of a slowly moving ram in the other end and the shape of the die, the billet
is deformed into a complex thin-walled profile of specified design, [HSH92]. Figure 1
gives a schematic picture of such an extrusion process with a simple die shape.

MODEL

The governing nonlinear equations are the pressure-velocity equations

0
Re(6—?+u~Vu) = —-Vp+V.71 in Q, (1)
Vu = 0 in Q,
together with the heat balance equation
a0 9 .
Pe(52+u-V9):V0+ﬂe:T m Q, (2)

where ) is the physical domain where the extrusion process takes place. The primary
variables are the velocity u, the pressure p and the temperature §. Further, 7 = 2uc
is the stress tensor, where p = 7/(3€) is the nonlinear viscosity coeffisient. Here
7(5,0) = a larcsinh((Z/K)=) is the Zener-Holloman material model with the
parameter Z = Z(¢,0) = €exp(Q/(RH)). The viscosity coeffisient also consists of
the effective strain rate € = (Ze : €)%, where ¢ = 3(Vu + Vu?) is the strain rate
tensor. The parameters o, m, K, @, R and 8 are problem- and material dependent
with typical values [Seev93]. The Reynolds number and the Péclét number are, in the
equations, denoted by Re and Pe, respectively.
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From specific material- and problem-dependent parameters we get the Reynolds
number to be very small, typical of magnitude 10~8. We may therefore neglect the left
side of the vector equation in (1), but note that the equation still is strongly nonlinear
because of the term V - 7.

-V-7+Vp = 0 n £,

3
V-u = 0 in Q. ®)

SOLUTION PROCEDURE

The pressure and velocity are slowly varying over a timestep relative the variation
of the temperature. To decouple the heat balance equation from the other equations,
we therefore, on each timelevel, use a sequential iterative solution procedure. In the
first step the pressure-velocity system (3) is solved, using the temperature solution
from the previous timestep. In the second step the temperature equation (2) is solved,
using the velocity from the first step. The further iterations between these two steps
are performed using the most recently calculated temperature for the solving of the
pressure-velocity system. Each equation is linearized by Picard iterations.

The discretization is done by using a mixed finite element approch with hexahedral
elements and a triquadratic approximation for velocity and trilinear approximation
for pressure and temperature. Carried out on (3), this results in a linear block system

of the form
A A A B
A21 Ags A23 B% X _ A B X — F (4)
As1 Aszy Ass Bl Y|~ | B 0 Y G [’ '
Bl By B3 0

where B? is the transpose of B. Bramble and Pasciak, [BP94], give a method for
solving systems of this kind. The system (4) is reformulated in such a way that the
new coeflisient matrix M is positive definite,

= [ X _ A7'A Ay’ B X A{ AJ'F } 5
M{Y}‘{BAC;I(A—AO) BAzipt (Y =\ BAsiFr-cf ©

Here Ay is a preconditioner for A.

Let Mo:{é }(é}’ ©

where [ is the identity matrix and X is the preconditioner for the Schur complement
BA~1Bt,
K = Ny + h2I, )
where Nj, is the solution operator on the pressure grid for a finite element
approximation to a Neumann problem and & is the spatial resolution. Each evaluation
of the preconditioner K then requires solving a discrete Neumann problem on a grid
of mesh size h. This preconditioner, [BP94], gives rise to convergence rates which can
be bounded independently of h.
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Figure 2 Full domain with refined outlet area.

A new inner product can be defined,

[{ v }{ v H = (AU, X) = (AU, X) + (V. ), (8)

in which the matrix M is symmetric. In addition to the matrix M being positiv definite,
it can also be shown, [BP94], that the condition number of MM is uniformly bounded.
Therefore the precondltloned conjugate gradient method is used on the system (5)
preconditioned by (6).

The temperature distribution is determined by first solving the hyperbolic part of
the heat balance equation (2) by the method of characteristics, [DES92], and then
solving the elliptic part by the finite element method. The resulting linear system is
solved by a preconditioned conjugate gradient method.

DOMAIN DECOMPOSITION

As pointed out earlier, the extrusion problem is rich on localized phenomena, especially
near the outlet through the die. The computational domain is divided into overlapping
subdomains and refined at locations with large gradients. An example of a domain
with a refined area is shown in Figure 2, where a sudden contraction is used to mimic
the effect of a die. The pressure-velocity system is elliptic, and can be solved by
conventional domain decomposition methods, [CW92], [DW89]. We will be using an
additiv Schwarz method.

To illustrate the domain decomposition idea, the classical alternating Schwarz
method is used for the heat balance equation. The total computational domain
is divided into two subdomains £; and Q of equal size and resolution and has a
fullsized outlet, see Figure 3. The two subdomains overlap with a given number of
elements. The individual boundaries are denoted 8Q;, in which the interior surfaces
T; are included, ¢ = 1,2. The initial-boundary value problem for the temperature is
stated below, where the vector-valued function f is a given velocity field, the function
¢ is a boundary function and 6;, is an initial profile.

Pe(%+u~‘76) VH+Be:T in [0,7]x QC R?,
u(z,y,z) = f(z,9,2) in Q,
0z, y,2,t) = g(=,y,2) on 89 Vi,
b(2,9,2,0) = 6(2,9,2) in Q at t=0.

(9)
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Figure 3 Two equally sized overlapping subdomains.

Before we present the algorithm we introduse some notation. Let 6

473

k denote the

solution in Q; after k Schwarz iterations at timelevel n, and 2 »I0, be the restriction
of 83, to I'y; similarly 67 ;|r, is the restriction of 07 to I's. The part of the true
boundary that surround each of the subdomains except for the interior surface is
denoted 8Q;\T;, i = 1, 2. The characteristic solution at timelevel n is denoted by 67,
and the subscript on the nonlinear part (fe : 7)P; indicates that the iterate 67 is

used to linearize. Note that & = 0 indicates the characteristic solution.

Algorithm:
1. Solve the hyperbolic part for the characteristic solution 87:
9 .
—g—t +u-Ve=0 in Q.
2. Solve for 67 ;:
i At von At 0o
0, = F(;Ael,l + I{e‘(/k :T)io+ m {2,
9?1 = 9_12 on P1,
0, = g on d\TI.
3. Solve for 63 ;:
n At o At o i 0
03, = P;A 21+ E(ﬂf 17T)30+ m {2,
6;’)1 = gn on PZ,
By = 9 on 0%\l
4. For k = 2,3, ... solve iteratively for 0“ 1 and 63 0
(o, = At SoAG + o (,GE e +0°  in Q
1 ?,k = 92,k—1|l"1»
L 0?k = on 391\I‘1,
i .
(03, = §A02k+ A ey +0* in O,
§ 6, = 0yl
L 63,,3 = g on 0Q.\Ts.
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Figure 4 Computational domain, note that 'y = 02\ (Tjn U Tout).

NUMERICAL EXAMPLES

In this section we show a solution of the system (2)-(3) for the simple geometry given
above.

Consider €2 to be a bounded domain in 22 with a boundary T’ = I'j, U Tous U Twal,
i.e. I'is & union of an in-boundary, an out-boundary and the rest of the total boundary,
called the wall-boundary, see Figure (4). In the calculations presented, Iyt is regarded
as a free boundary in respect to velocity and temperature.

VELX PRESSURE

Z-Axis

Figure 5 (a) x-component of velocity with a domal profil due to the no-slip condition,
and (b) matching pressure with the largest values at T, and especially near the corners.

Figure 5 shows the solution to the equations (3) with the boundary conditions

u = [100] on Ty,
u = 0 on I‘wally
p = 0 on Pout.

The parabolic heat balance equation is solved by the alternating Schwarz method
with overlap, following the algorithm discussed above. Results from two different
cases are presented. For better to visualize the solutions in the interior of the domain,
it is split in two along the flow-direction, and only one half of the domain is shown.
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Figure 6 (a) Temperature after 5 timesteps, and (b) after 20 timesteps for the first case.
(c) Temperature after 5 timesteps, and (d) after 20 timesteps for the second case.

In Figure 6, (a) and (b), the temperature distribution resulting from solving (9) with

f(z,y,2)=[100]

and linear boundary and initial conditions,

1
g(ﬂf, Y, Z) = 1- fx
9tu = ]. — %l‘

in €,

on ON\Tout,
in £,

is shown. In Figure 6, (¢) and (d), we have a no-slip condition causing friction,

100]
f(z,y,2) = [

in Q\T'vwan,

on 1-‘wa.ll )
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and zero conditions on the temperature,

g(x,y,z) =0 on B‘Q\Fout:
0t0 = 0 in Q.

The main difference between these to cases is due to the no-slip condition in the one
case. In the first case the velocity is the same in the hole domain, and the heat is
smoothly spreading into the middle of the domain. Looking at a cross section at
some point in the flow-direction, the largest values will always be located in the
middle. The next case also show smooth spreading into the middle of the domain,
but in a cross section similar to the one mentioned above, the largest values will be
in the corners and along the edges.

CONCLUSIONS

The tests carried out indicate that the domain decomposition algorithm presented
above performs well for the nonlinear parabolic equation compared to the global
solution on one domain. The method will, however, be further investigated.

For the nonlinear elliptic pressure-velocity system an additiv Schwarz method gives
good results, but further experiments must be (and will be) carried out to support
such a statement.
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