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ABSTRACT

The main objective for this work is to study two phase flow (oil, water) in a
heterogeneous porous media.

To solve the elliptic pressure equation we use a finite element formulation, while the
velocity is calculated in a flux conserving manner from the pressure. For the parabolic
saturation equation we use a two step operator splitting procedure [EE87].

Our computational domain consist of two regions with different physical properties.
Domain decomposition is used for adaptive refinement, and to treat the interior
boundary. We present an iteration procedure which ensure conservation of mass.

MODEL PROBLEM

For incompressible immiscible displacement of oil by water in a reservoir the following

equations yeld
V-v=q(xt) ¢y
v =-K(x)M(S,x)-Vp 2)
65+ V- (S(S)v) = € - (DS )VS) = as. 3
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We will use Neumann type of boundary conditions.

v is the total Darcy velocity, which is the sum of the velocity of the oil and water
phase. K(x) is the permeability which depend on the porous medium, M(S,x) is
a mobility function that depend on the water saturation S, and p is the total fluid
pressure. ¢ is the porosity of the porous media which is considered comstant. The
fractional flow function f(S) is a nonlinear function of the saturation and is given as

9 = 5535 @
where the mobility of oil and water,
A, L€ {o,w}
is a given function of 5.
The diffusion coeffesient D(S, ) is
D(5,2) = K(2)f(S)o(8) - ©

K(z) is the absolute permeability and P, is the capillary pressure function It is well
known that a nonlinear equation like eq( 3) will establish shock like solutions therefore
we split the function f(S) into two parts. [EE87] [DR82]

£(8) = £(5) +b(5)S,

The convective part

88 _ 98 4 _
¢5- =5 +I(S)v-V5=0, (6)

is solved by the Modified Method of Characteristics [DR82]. The elliptic part

B9 + V- (B(8)SV) ~ V- (D(S5,%) - V8) =0 (7)

is discretised by bilinear finite elements, with optimal testfunctions [BM84] . The
nonlinear terms in the elliptic equation is linearised around the solution of the
convective equation.

The pressure equation is solved by an finite element method with bilinear elements
and chapau testfunctions. The velocity is derived from the pressure with a second
order method.

‘We use a sequential time-stepping procedure decribed in {DES92].

COMPUTATIONAL DOMAIN

Our computational domain consist of two regions with different physical properties.
The first region has permeability Ky and capillary pressure curve Pgi, the second has
permeability Ky and capillary pressure curve Pgos.
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Figure 1 Computational domain showing two .different regions with different physical
properties connected trough an interior boundary.

The capillary pressure function,

Po(8) = 0.09¢“°'9K‘°’1—1——\;—§_§ (8)

depend on the saturation S and the permeability X [KME92]. Further,
M =87, 1€ {ow}
in both regions.

In addition to our outer Neumann boundary condition, the discontinuity in K, leads
to a problem with the interior boundary condition. The capillary pressure must be
continuous over the interior boundary I'.

Pg, (51) = Po,(52) 9)
This condition lead to a discontinuous saturation over the boundary.
51 # Ss (10)

In order to conserve the mass over the boundary the flux must be conserved over the
interior boundary T

(F(S)v — eD-VS) -nl = (f(S)v~eD-VS)?-n" (11)

DOMAIN DECOMPOSITION

In order to solve our equations on the computational domain, we construct a coarse
grid Q¢, where the interior boundary is in the middle of a set of coarce grid elements.
In addition we construct a fine grid Qp , where the interior boundary is placed in
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a set of nodes. The fine grid is decomposed in into the same number of overlapping
subgrids as there are elements in the coarse grid. We may write

Qp = UQE.
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Figure 2 The coarse grid, and fine overlapping grids.

For those coarse elements that contain an interior boundary we need two additional
grids. Let 0* be a fine grid that contain an interior boundary, then QF is the part of
QF that has permeability K; and QF is the part of Q¥ that has permeability Ky . QF
and Q% has equal spacing to QF.

THE SOLUTION PROCEDURE

¢ Solve the pressure equation, and derive the velocity from the pressure.
o Trace the characteristics with the new velocity.
e Determine the area with large gradients in saturation, and trace the
characteristics for the fine grids where the gradients are large.
e if the refined grid has an interior boundary
MassBalance iteration.
else
Solve the elliptic saturation equation.

The three first steps in the procedure is well described and published in [DES92],
so we will only describe the new massbalance iteration in the following.
The massbalance iteration ensures that no mass is lost or created at the interior
boundary. For the massbalance iteration we use the fine grids which contain an interior
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boundary as a control grid. The amount of mass that has been transported in to this
”homogeneous” domain, ¥, is the same mass that we have to distribute between the
two subgrids (¥ and 9§ . The massbalance iteration can be outlined like this:

e Trace the characteristics on 0%,

¢ Use the jump condition at the boundary, Po1(S;) = Ppa(Ss).

e Trace the charcterisitcs on 2%, with the new saturation on the boundary.
e Solve the elliptic equation on 0¥ and Q¥ with Diriclet condition at the
interior boundary.

Calculate the massbalance.

While the mass is not balancing do

1. Add to the saturation at the left side of the boundary a scaling factor

times the error in mass.
2. Use the jump condition at the boundary to determine the saturation

on the right side of the boundary.

3. Solve the elliptic equation on both domains with the new Diriclet
condition at the interior boundary.

4. Calculate the massbalance.

e end do.

NUMERICAL RESULTS

The numerical results is shown for two regions with different permeabilities. Figure 4
show the effect of the permeability on the diffusion function.

e K=10 --n
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Figure 3 The diffusion function for K =1 and K = 10.

The following figures shows a domain with an interface at z = 0.5. At the
interface we have a jump in the saturation pofile due to the interface-condition
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Pe,(81) = Pc,(S?)-
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Figure 4 Saturation profiles when K1 = 10 and K3 =1
€= 0.01.
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Figure 5 Saturation profiles when K1 =1 and Kz = 10.
€= 0.01.

Interior boundary ot £ = 0.5 and

In 2D the saturation at the interface is given by the mean of the saturation at the
interface, therefore we are not able to see the jump as clearly as in 1D, where we where
able to present one point with two different saturation values. In both 1D and 2D
the mass is nicely conserved. We can conclude that the massbalance iteration work

in both 1D and 2D, and is consistent with the boundary conditions 9 and 11. The
maximum number of iterations needed in 2D is eleven.
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saturation at time=0.024
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Figure 6 Saturation profile in 2D when K1 = 1 and K, = 10. Interior
boundary at z = 0.5 end € = 0.01.
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saturation at time=0.024

Figure 7 Saturation profile in 2D when K1 = 10 and K> = 1. Interior
boundary at x = 0.5 and € = 0.01.
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