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Summary. In this article, we present a new domain decomposition method for solving
convection—diffusion problems with dominant convection. We combine the sequential
algorithm with a parallel strategy to adapt to the special properties of the equations.
The sequential algorithm is used in the downwind direction while the parallel algorithm
is applied in the crosswind direction. In both algorithms, an overlapping domain
decomposition process is introduced. In each patch, we solve a local convection—
dominated problem with artificial boundary conditions by the streamline diffusion
finite element method. A globally continuous discrete solution is constructed from all
the patch-wise solutions. It is proven that this global solution converges to the exact
solution with an order of O(h*/2) in the L?>-norm as long as the overlapping width is
kept to O(h%/%|logh|) in the crosswind direction and to O(h|logh}) in the downwind
direction. It is emphasized that we do not require the patch size to be sufficiently small
and do not iterate the whole process as usually done in other domain decomposition
approaches.

1 Introduction

Since the domain decomposition method was proposed years ago, many papers have
been published for solving symmetric positive definite elliptic problems, This method
has been demonstrated to have a good condition number as an iteration method and
can also be implemented in a parallel way. For nonstationary convection-dominated
problems, a domain splitting method was proposed and analyed in [6]. The proper
convergence order was there achieved without conditions on the macroelements. For
stationary nonsymmetric problems, there are also some papers, e.g., [5] and [1], in
which the convection term is treated as a perturbation of the elliptic part. In those
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papers, the coefficient of the diffusion is not allowed to be very small in comparison
with that of the convection, i.e., the Peclet number should not be too large. They
must enforce an inconvenient mesh condition that the coarse mesh must be fine
enough. Looking at the analysis carefully, one can see that the coarse mesh size must
be proportional to the inverse of the Peclet number. This is almost impossible for
convection—dominated problems.

In Kapurkin and Lube [4], a modified Schwarz iteration method for convection—
dominated problems was discussed. An overlapping domain decomposition technique
was applied and a convergence proof was given for the continuous problems.
Their numerical experiments already showed that the iteration number depends
on the number of subdomains in the flow direction. From the theory of partial
differential equations, it is obvious for convection—dominated problems that any
change in the inflow boundary condition influences the solution at any point in the
downwind direction decisively. The discrete solution in a subdomain must wait for
its inflow boundary condition from the upstream-neighboring subdomain. Before the
approximate inflow boundary condition comes from the neighboring subdomain, any
artificial boundary condition in this subdomain gives only a false approximation and
hence wastes time and effort.

For convection—dominated problems, we propose a new domain decomposition
technique which avoids any unnecessary iterations. Simply speaking, we take sequential
computations for subdomains in the downwind direction while we take parallel
algorithms for subdomains in the crosswind direction. Since we cannot compute the
discrete solution in the convection direction in a parallel way, the sequential algorithm
in this direction is proposed only to reduce the size of the subproblems. In fact, we
could use one whole strip from the inflow boundary to the outflow boundary if one
would like to solve a comparatively bigger problem instead of several smaller ones.

In order to reduce the overlapping widths, we could also iterate the above process.
One can investigate the dependence of the condition number on the iteration. This
will be done in a forthcoming paper.

Test computations for model problems show that the proposed domain
decomposition method works very well. The overlapping widths are usually limited
to 3h in the downstream direction and to hllogh| in the crosswind direction. This
logarithmic dependence occurs only in the crosswind direction. On the other hand,
the test computations show that the overlapping sizes in the two directions are not
influenced by the number of macro—elements, though we have linear dependence in
our theoretic analysis. The discrete solution constructed by a global process converges
usually with an order of O(h?). Since the sub-problems on each patch are small in
comparison with the global one, the iterations for solving each algebraic system are
significantly reduced.

2 A Domain Decomposition Technique

As an illustrative example, we consider the model problem

T PlUgy — Elyy +ur +u = f, in Q, (21&)
u = g, on 99, (2.1.b)
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where Q = (0,1) x (0,1) in B2, p and ¢ are small non-negative parameters. If p or ¢ is
zero, we should specify the boundary condition only on a part of the boundary 9.

Since the standard finite element method gives an oscillating discrete solution if the
boundary condition ¢ or the source term f is not smooth, the streamline diffusion
finite element method (SDFEM) was proposed to damp away the possible over— and
undershootings. Let V;, C H'(£2) be a finite element subspace, in which linear or
bilinear functions are defined on each element. The functions in V9 have homogeneous
boundary conditions. By modifying the test function as W + §W, with § = O(h), the
SDFEM reads: Find V' € V;,(Q), such that

p(Ve, Wo) + (Vg W) + (Vo + V, W + §W,) = (f, W + W), YW € V)(Q),
vV =G, on 8,

where G is some projection of g on Vy, and the term pVy, + £V, is neglected for a
linear or bilinear ansatz. Since the diffusion coefficient e is very small, or even zero,
we introduce an artificial diffusion €, = O(h®) with 3 < & < 2, following an idea of
Johnson et al. [3]. The order of ,,, depends on the localization property of the scheme,
which will be determined later. Defining the bilinear form

BV, W) = ((p + 8)Va, We) + em(Vy, Wy) + (Var, W) + (V, W + 6W2),

and a linear functional

L(W) = (fu W+ 6Wa:)7
we work with the discrete problem of finding V' € V, such that

B(V,W) = L(W), YW e V%Q), (2.2.a)
V = G, on 90, (2.2.b)

We associate the bilinear form B(-,-) with the following energy norm
IWN? = 8IWell? + eml|Wy I + W12 (2.3)
It is easy to verify that
1
BW,W) > WP, YW € VA®), (2.4

which gives the global stability of the SDFEM:
VI < 20 £1l + Cllgllae- (2.5)

To distinguish the type of boundaries, we introduce the following definitions ff)r the
domain Q. Let n = (n,,n,) be the outer normal along the boundary 9. Tts inflow
boundary 8Q_, outflow boundary 89, and stationary boundary 0§} are defined by

0. = {(z,y) € 8Q, ne(z,y) <0},
oy = {(:r,y) €09, nﬂ?(m7y) > 0}7
00 = {(z,y) € 09, ny(z,y) = 0}.
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The solution of problems with dominant convection has significantly different
properties along these types of boundaries.

Problem (2.1) depicts a motion from the left to the right with small diffusion.
A discretization method should cover this property of the equation. For parallel
computation, we divide the domain Q in patches with two families of lines which
are parallel and orthogonal to the characteristics, respectively. In the present case,
these two families of lines are {x = const.} and {y = const.}. We let

Q5 = {(ﬂf,y) tgigfr<a, Y1 Sy < yj}7

fori=1,...,Mand j=1,...,N. Here, we have 0 = 0, zpy = 1, yo =0 and yy = 1.
Define €; = UM, Q; ;.

The main idea for solving convection-dominated problem is as follows. In the
crosswind direction we solve subproblems in a parallel manner, while in the downwind
direction we solve subproblems in a sequential manner. To understand this scheme,
we assume that there are N processors. The j—th processor solves subproblems in the
“big” patch ;. In the strip €, we solve subproblems for i = 1, ..., M sequentially. We
take overlaps in the crosswind and downwind direction, but with different overlapping
sizes. Let d, and d!, be the overlapping sizes of ; ; in the downwind and crosswind

Y
direction, respectively. Thus, we define the overlapping patches (see Figure 1) as

Qg{j:{(x,y); z; <@ < wip + dy, g5 — d, Syﬁyﬂﬁd’ff}”ﬂ'

Q0
.dz’ d
yj Y .
i — flow
Qi,j te— d‘r
Yi—1
oQ_ o0,

Ti—1 Ly IO
Figure 1 Subdomain QF;

Now we can describe our domain decomposition scheme as follows.
Step 1: Assume that we have the discrete solution U;_; ; on the boundary = = x; with

Upj=G Fori=1,...,Mand j=1,...,N, we find U; ; € Vh(Qg{j), such that

B(Ui;,W) = L(W), YW e V{(Q4)), (2.6.2)
Uj = U1y,  on 0(Q¢;)_, (2.6.b)
Ui; =0, on (0 ;)4 UA(Q ). (2.6.c)

Remark 1 Forj=N,i=1ori= M, we need to modify the homogeneous boundary
conditions to the global boundary condition. We specify U; ;j(z,y) = G(x,y) if (z,y) is
located on 5.
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Remark 2 For a fized i, we can compute the patchwise solutions in parallel with
j=1,...,N, but for a fired j we must compute them sequentially withi=1,...,M.

Step 2: We assemble the patchwise solutions to a globally continuous solution U €
V1,(2) by an averaging process in the nodal points z of Tj:

U(z) = Ui;(2), for z € Q; ;\0%; 5, (2.7.a)
U(z) = averaging, for z on the common boundaries of Q;; (2.7.b)

3 Error Analysis for the DD Scheme

By Splitting v — U = (u ~ V) + (V — U) with V defined in (2.2), we see that the
estimate of the error u — U between exact solution and the discrete solution of the
domain decomposition scheme leads back to the error U — V, since the estimate of the
first part can be found in a standard book (see, e.g., Johnson [2]). For the L?-norm,

we have
U =VIP =3 U=V, <CY_ Ui — Vi, (3.1)
i i
Obviously, we have V{(Qf ) € V(Q). Setting F; j = V — Uy ;, we subtract equation
(2.6) from equation (2.2) and get

B(Ei,j’ W) =0, VW € Vg (ng)y (3.2.a)
E;; = Bi_yj, ond(9Q;)_, (3.2.b)

To estimate F; ; in (3.2), we state a lemma, the proof of which will be omitted.

Lemma 1 Suppose that F satisfies

B(E,W) =10, VYW e Viw?, (3.3.a)
E = G, on dw®. (3.3.b)

If the triangulation in w®\w is quasi—uniform, then the choices of the streamline
diffusion and the artificial diffusion must satisfy

§>Ch, en>ChHY/2 (3.4)

Then there exist constants C > 0 and 0 > 0, independent of b, p and &, such thatl the
Sfunction E in the subdomain w admits the estimate

1512 < © (I8, +o~ F G + < FE NG ) (35)

Applying this lemma to (3.2) on the subdomain Qf; and noting that 3 )¢ C
Q;..1 7, we have

_ 84k _Lay 2
I1E:s13,, < 0<||E,A_1,j||gmi’j)‘i +e7F nvng(mﬂﬁe mHVHam,.,j)g)
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-1 2 _ody 2 by 2
< Coh “Ei—l.j”Q,»_l‘j +Cy | e 77 ”V“a(QiJ)i +e vom “V“a(gi‘j)g .

Taking into account that Ey; =0 for j = 1,..., N, and this into (3.1), we get

M i odi N
2 B B 2
(U= VI[P < 0> A0 ( e r-m)E:nvug,-.j-

=1 j=1

For any v > 3/2, we can clearly choose di and dg as

di = (M —i+20)07"8|loghl, df = (M —i+2v)07"/en|loghl, (3.6)

and we obtain by the global stability estimate (2.5)
U~ VI? <or®|[VI* < Cr* (1117 + llgll3e) - 3.7

Summarizing the proof above and combining the standard estimate for w — V, we
can state our convergence result.

Theorem 1 Suppose that the triangulations Ty (S ;) are quasi-uniform for any i, j,
and that the diffusion coefficients satisfy

p<Ch, e<Ch2
We specify the parameters 6 and €., in the SDFEM by
§=Ch, e,=Ch?

For any v > 3/2, we take the overlapping widths in the streamline and crosswind
directions as

di = (M —i+2v)h|logh|, dj=c(M —i+2v)h**|logh).

Then the discrete solution achieved by the domain decomposition scheme (2.6) and
(2.7) admits the error estimate

llu — Ul < CR*2|{u)| g2y + CR” (£ )| + llgllos) - (3.8)

Remark 3 If we orient the quadrilateral mesh in the streamline direction and take
it almost equidistant in the direction, we can improve the convergence order in the
L?-norm to O(h?) and reduce the overlapping width in the crosswind direction to
O(h|logh}) (see [1] for the techniques of the proof).

4 Numerical Results

The theoretical results of the preceding sections have been verified through various
test computations. It turns out that the overlapping widths d, and d, actually do not
depend on the number of the macro elements, though theoretical convergence results
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show such a dependence. All tests have been performed on the unit square and the
equidistant M x M macro-elements are used. To verify the order of convergence, we
choose a smooth solution.

Example 1: We consider the model problem

—eAu +u, +2u = f, in Q, (4.1.a)
u = 0, on 01, (4.1.b)

with the exact solution u = 4z(1 — z)y(1 — y). We take ¢ = 10~ for all the
computations.

Test computations show that the number of overlapping elements in the downstream
direction (here, ) is independent of the size of the fine meshes, though we theoretically
have a logarithmic dependence on the fine mesh size. At each refinement level, for fixed
overlapping size in the crosswind direction, the error does not decrease when d, goes
over 3h,. This means that the choice d, = 3h suffices to control the error of overlapping
in the streamline direction. However, this logarithmic dependence on the fine mesh
size is visible in the number of overlapping elements in the crosswind direction.
While refining the fine mesh, we must increase the crosswind-overlapping size d,
logarithmically in order to control the error of the overlappings. In the theoretical
analysis we have also that d, and dy, are proportional to the number of macro-
elements in the streamline direction. But in the test computations, we have not seen
any relations between the overlapping sizes and the number of macro-elements.

In order to illustrate the error of the domain decomposition method, we first give
the L?-error and the corresponding order of convergence with the SDFEM without
domain decompositions. We set h = 2~V with the refinement level N.

N 5 6 7 8 9 10 11
Error | 4.63(-4) | 1.18(-4) | 2.95(-5) | 7.39(-6) | 1.85(-6) | 4.63(-7) | 1.16(-7)
Order 1.99 2.00 2.00 2.00 2.00 2.00

Table 1 The error and the convergence order without DD

In the following tables, we specify the overlapping size d, = Lh in the crosswind
direction with the constant L. Table 2 represents the error for different refinement
levels. The constant I. shown in the tables is the smallest necessary number of
overlapping elements to suppress the error of the domain decomposition.

N 5 6 7 8 9 10
L 1 1 5 6 7 8
Error | 4.68(-4) | 1.18(-4) | 2.95(-5) | 7.40(-6) | 1.85(-6) | 4.63(-7)

Table 2 Results for a 2 x 2 decomposition

Table 3 shows that the error does not depend on the number of macro-elements
and that the number of overlapping elements in the crosswind direction increases
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N 7 8 9 10 11
L 5 7 7 8 8
Error | 2.97(-5) | 7.40(-6) | 1.85(-6) | 4.63(-7) | L.17(-7)

Table 3 Results for a 32 x 32 decomposition

logarithmically with the refinement level. Comparing the errors in Tables 2 and 3
with those given in Table 1 for a fixed IV, we conclude that the extra error caused
by the domain decomposition is fully suppressed by appropriate overlapping sizes d;
and dy and that the convergence is of second order. We can surely construct a special
triangular mesh which gives an O(h3/ 2)—convergence. This was discussed in a previous
paper [8].

The domain decomposition method has another great advantage. One can refine
a macro—element to cope with the local property of the solution. For some solutions
with boundary layers or interior layers, we must use locally refined mesh to reduce
the global error. This is complicated to implement if one uses only one mesh over the
domain. Using the domain decomposition method, it is easily perform by specifying a
much finer mesh in some subregions.
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