Estimates of Convergence Rate of
Parallel Multisplitting Iterative
Methods with Their Applications

Tongxiang Gu

1 Introduction

Consider large-scale systems of linear algebraic equations
Az =D 1)

where A € R?*™ and b € R™. O’Leary and White [8] proposed a parallel multisplitting
iterative method (the PMI-method) for solving (1) in 1985. Through multisplitting of
A

A= M; — Nl; with det(Ml) 75 0; l= 1, 2, Ty, k, (2)
they constructed the iterative procedures
Y™ = M Ni™ + M 1=1,2,---,k (3)
for (1). By introducing weighting matrices E; for I = 1,2,---,k with
k
0SELT Y E=1I, )
=1

where I is the n xn identity matrix, they combined (3) and obtained the PMI-method:

k
g™ =3 By m=0,1,2,- (5)
=1
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The triple (M, Ni, Ei) | = 1,2,---,k is called a multisplitting of the matrix A and
we can rewrite (5) in the equivalent form as:

™ = Hz™ + Gb (6)

where H = Z E[Ml Nl, G= Z E[M—

Many authors have presented dlfferent schemes based on different multisplittings of
the coefficient matrix A, for example, PMI-GS and PMI-SGS [7], PMI-SOR {2}, PMI-
AOR [10], PMI-GSOR and PMI-GAOR [3]. The convergence of these methods were
proved under different conditions. However, the methods used to prove the convergence
in [2}, {3], [7], [10] were inconvenient and varied. The author knows of new previous
estimates of the convergence rate of PMI-method. So it is necessary to simplify and
unify the proof of the convergence of PMI-method and to estimate the convergence
rate of PMI-methods simply and practically.

2 Estimates of the Convergence Rate of PMI-methods

It is well known that the estimate of asymptotic convergence rate R(H) of iterative
method is equivalent to the estimate of the spectral radius p(H) of the iterative matrix
H, because R(H) = —log(p(H)). We will denote M,,N,,El by (ml;), (nk;), (),

respectively, and omit the index! = 1,2,---, k. We denote
P ¥ ’ z E JEI ’ 1<l<k 112?<Xn

J#i

min , min by 32,3, ), max, max, min, mm respectively.
I<I<E’ 1<i<n =7 i

Theorem 1. Let A be nonsingular and (M, Ny, Ey) be a multisplitting of A. If M, is
SDD (strictly diagonally dominant), then

l
POT) SIS (5 W}} @

Proof. It is well known that p(H) <|| H || , s0 we need only to prove the right
inequality.

= (nd pb e T S T
Let n; = (ny,n3, -+,n,)" be an n-vector and M 'n; = z; := (zk,xb,---,z})7.
Thus,

T
-1, _ _ 1.1 1.1 L
E EM; 'n = E Bz = (E 6115”1:2322352,'--, 2 :enn$n .
l 1 i i {

Since Ee’ =1fori=1,2,---,n, we have

I B |, = maxll 3 ehiatl} < ma{max{jali}} = lalo].
[
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Consider the 4o-th equation of Mz, = ny,.

< Ingl+ 2] - > Imie;

Imzozol | me] Tiy
J#i J#i
and this implies
|ng| ||
23] < ax{max{———-—}}
I ZDZD E | 10] ! ¢ m‘ !Z ml l
Hence :
Ini
-1
DI m?"{mfx{W}}
M; is SDD. Let D; = diag(M;), C; = D; — My, then (M;) = |Dy| - |Ci|, |D;'C| <

|Dy|~|Cy| (in fact, the equality holds). We have
(DG < p(ID7*|Cl) < 1.

Hence M, is invertible and

|M7t = (D - C)7Y =) (DG D
j=0

<Z(ID1| NCD D™ = (IDd] = (G ™ = (M)~

Furthermore

IM7IN < (M) TN |H S S EIMTIN <Y B (M) YN = F.
1 l

Let N; = (N, N%,- -+, N}), where N} is the i-th column vector of V;. Then

p(H) <[ H ||ooZ|| F lloo= max{E(ZEz(Mt) YN}
“maX{Z(EEz(Mt) 1INII ZE,(M,) NG, - 7;EI(M)'1!N£Dﬁ}
= m*’ax{‘z,(l’ﬂz(Mz)‘]L Z INH)s } =| ZE,(M,) ; [N} lloo

(IN ) _ |72},
< m?X{m?X{Z -y ) = e )
FE33

This proves the theorem.

Remark. We can see from the above proof that (7) holds for M; € R**" N; € R*>*™
under the assumption that M; is SDD. We can make the same remark on the following

theorem and corollaries 1 and 2.
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Theorem 2. Under the assumptions of theorem 1 and assumming that M; is a L-
matriz, Ny > 0, it follows

l
. _1 g il

The proof of this theorem is analogous to that of theorem 1.

Corollary 1. Under the assumptions of theorem 2, we have

mm{mm{z TN < p(H) <N H oo

Z

= m?'X{z,-:(E,: E M Ni)y} < mlax{mfx{zj: 9

n;
Z ml, 1}
In particular, if En”/ Zm = k(constant), p(H) =|| H o= k. If an/ me Z

constant and H zs zrreduczble the two middle inequalities are strict.
Proof. The first part is obtained from theorem 1 and 2, while the second part can
be obtained from theorem 9 in §1.3 of [6].

Corollary 2 ([4, 5]). Under the assumptions of theorem 2, we have

mln{z

}<mm{Z(M IN)i} < p(M7IN) <[ M7IN floo

'I’L”

= max{Z(M IN)i;} < max{z (10)
Proof. We obtain (10) from corollary 1 taking k = 1 and My = M,N; = N.
We can get a further direct result from theorem 1.
Corollary 3. If M;, N; satisfy
lmzzl>2‘mzyl+2lnz]| i=1,2,--,n (11
J#L
and
‘mizl > Z‘mijh 1= 1)27"'7'”'7 (12)
J#i
then
p(H) <|| H Jlo< 1. (13)

The second inequality in (13) will be strict when the inequality (11) is strict. The
PMI-method is then convergent.
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Consider the systems of linear equations (1), where
5 -2 -2 1
A= -4 10 -4 |;b=|1].
-2 -2 5 1
We split A into several two-splittings as follows
5 -1 -1 5 =20
(a) My=|-2 10 -2}; Mo=| -4 10 0 |;
-1 -1 5 0 -2 5

N1 =M — A; Ny = M, — 4; B, = diag(0,0,1); E, = diag(1,1,0);

(b) Take My, M, N1, N, as in (a) and take E; = diag(1,0,0); B, = diag(0,1,1);
(c) Take My, Ny, Fs,E» as in (a) and take M, = diag(5,10,5); Ny = My — A.
It follos from Corollary 2 that

p(H)=2/3 for case (a) and case (b),
2/3 < p(H)<4/5 for case (c).

In fact, we get from practical computing that

(@) det(AI — H) = A(3X — 2)(9\ + 5)/27 and p(H) =2/3,
(b) det(AI — H) = (83X — 2)(6A + 1)(18X+5)/972  and p(H) = 2/3,
() det(AI — H) = (5A+ 2)(15)2 — 6A — 4)/75 and

2/3 < p(H) = (6 + v/276)/30 ~ 22.61/30 < 4/5

4 Applications

In this section, we give some convergence and divergence theorems of relaxed PMI-
methods by using the estimates established in §2. In order to do this, the concepts of
optimally scaled matrix and its several properties introduced in [5] are useful.

Lemma 1 ([5]). Let A = (a;;) bea irreducible matriz with nonzero‘diagonal entries,
D = diag(A), B = D— A. Then there egzists a diagonal mairiz Q = diag(q1,92, -, qn)

with positive diagonal entries such that A= (Eij) = AQ,

S 1y 1/l Gal=p(DIMB)  i=1,2m (14)
J#i
here Z is unique except for a constant factor. Furthermore, for an arbitrary A= (Eij)

=A P where P = diag(p1,p2, - ,Pn) with 0 < p; # constant for i =1,2,---,n, we

have _ ~
min{}" | @5 |/| @i [} < p(DI7B)) < max{ || ai; |/} o |} (15)

i #
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We call A the optimally scaled matrix of A. Several properties can be established
for it.

Property 1 ([5]). Under the assumptions of lemma 1, we have
P DI BN =N1D 17| Bl llo= p(ID|™"|B)

where D= diag(;{), ]~3=5 ~A4.

Property 2 ([5]). Under the assumptions of lemma 1, the following four properties
are equivalent.

(a) p(IDI7HB]) < 1, (®) o(| DI B <1,
(c) A is H-matrix, i. e., (4) is M-matrix, (d) A is H-matrix, i.e.,( A) is M-matrix .

And if one of the above holds, A is SDD, i.e., | s | > 3] @i ).
J#i

Property 3 ([5]). Under the assumptlons of lemma 1, if A and A have matrix
splittings A = M — N; A— M N where M = MQ, 7\7_ NQ, M~ exists. Here Q
is given in lemma 1. Then

p(MIN) = p(R1 M) (16)

Let (D — L;, Uy, E;) be a multisplitting of A, where D = diag(A4), L; is strictly
lower triangular. Let R = diag(ri, 72, ,7n), @ = diag(wy,ws, - -,w,) be relatation
matrices, where r; > 0,w; > Ofor i = 1,2,---,n and let w > 0,7 > 0.- We can
then write the iterative matrices of PMI-SOR [2], PMI-GSOR [3], PMI-AOR [10] and
PMI-GAOR [3] as follows:
£,(4) =3 B{(D ~wL) 1[I -w)D +wl},
1

£Lo(4) = Z E(D — L)~ [(I - 2)D + 22U,
£rw(d) = EEI(D —rL) 1 [(1 —w)D + (w—r)Li + 0},
Lra(d) = Z E(D — RL)*[(I - 2)D + (2 — R)L; + 2Uy).
fwelet D= dia,g(A), B = D — A, then the Jacobi iterative matrix is J(4) = D™!B.

We denote the intervals (0, ﬁ(—m) and [O, ﬁz)—)) as I4 and ?A, respectively.
We then have the following theorem.

Theorem 3. Let A be an H-matriz with (A) = D — |L;| - |U;|. Then
(a) p(£u(AN < 1,Vwely .
(b) p(fg(A)) <1,Vw; € IA(V’i).
(C) p("e"‘,w(A)) <1 3 vr Sw,r€Ja,w€ly.
(d) p(£r,0(A4)) <1 ,Vr; Sw;,r; €1a,w; € 1a(V6).
Proof. Since (a), (b), (c) are special cases of (d), we only give a proof of (d). We
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first assume that A is irreducible. Hence, by theorem 1, we have

p(£r,0(4)) = p(£r,2(A) <I| £2.2(2) oo
[1=wifl@as |+ (wimrs) 3 1w 3 udy

y i<i
< mla,x{m?x{ ;“—Ti Z Ili,-l }} (17)
i<i
I—wibws p(1T(AN) ~rs 3 181/
~ <i
= max{max{ ore 3 10 /lax] o

i<i

When w; € I4 fori =1,2,---,n, we obtain |1 — w;| + wip(|J(4)|]) < 1. When a,b,c >
0,a < b, we have (a — c¢)/(b— ¢) < a/b. Hence, when r; < w;,r; €I 4,w; € I4(Vi), we
get from (17) that

p(£r,0(4)) = p(£r,a(4)) < |1 —wi] +wip(|J(A)]) < 1.

If A is reducible, we can change some zero entries of A into sufficient a small positive
number € > 0 such that A change into A and A, is irreducible. We can work with A,
as above. Finally, we can show that theorem 3 holds when A is reducible by taking
€ = 0 and using the continuity of the spectral radius of the entries of the matrix.

Remark. Theorem 3 shows that PMI-SOR, PMI-GSOR, PMI-AOR and PMI-
GAOR are convergent if the parameters are in the intervals given in theorem 3. This
is in keeping with results given in [2], [3], [10]. We unify the proof of convergence of
these relaxed PMI-methods. Using theorem 1, we can get more general results than
those given in [2], [3], [10] and theorem 3.

Theorem 4. If A is SDD, (A) = [D| — |Li| — |Ui} end w > 0,w; > 0,0 < 1 <
w,0 <7 < wj; fori=1,2,---,n are all smaller than 2|ayl/ Y |ai;|, then all relazed
J

PMI-methods in theorem 3 are convergent.

Theorem 5. If A is an irreducible L-matriz but not a M-matriz, then

(@) p(£,(4)) > 1 for sufficiently small w .

(b) p(£a(A)) > 1 for sufficiently small w;(Vi).

(e) p(£ru,(A)) > 1 for sufficiently small r,w with0 <r <w .

(d) p(£r,a(A)) > 1 for suitable small r;,w; with 0 < r; < w;(V5).

Proof. We also only show that (d) holds. First, we choose r; sufficiently small such
that D — RI; is SDD. Then we have from theorem 2 and property 3, that

p(£r,0(4)) = p(£r,2(4))

[1 - wi] + wip(JT(A)]) — i Ei 1/ ai | (18)
> mlm{mim{ - ;Ilij!/f aa | 1

and from property 2, we get that the right hand of inequality (18) is not smaller than
unit for any [ and i. So (d) holds.
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