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1 Introduction

Domain decomposition methods have recently become an important focus in the
field of computational mathematics due to the development of parallel computers.
The nonconforming finite element methods are effective for solving partial differential
equations derived from mechanics and engineering [3, 4, 5, 14]. But, there has been no
extensive study of domain decomposition methods with nonconforming finite elements
which lack global continuity. Therefore, a rather systematic investigation on domain
decomposition methods with nonconforming elements is presented in this paper.

It is well-known that extension theorems play key role in domain decomposition
analysis, especially in the case of nonoverlapping subregions. We also know that
extension theorems hold for conforming elements [1, 16, 17]. Hence the domain
decomposition analysis can be performed for the conforming finite element discrete
problems. When domain decomposition methods with nonconforming elements are
studied, a core question in domain decomposition analysis is “Do the extension
theorems hold for nonconforming finite elements?”

For this reason, we have established extension theorems for nonconforming
elements based on conforming interpolation operators and further error estimates of
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nonconforming finite elements solution under weak conditions [6, 10, 12, 13]. The
originality of the design of the nonoverlapping domain decomposition algorithms with
nonconforming elements which are continuous at the midpoints of the element edges
(such as the Crouzeix-Raviart elements), is that the internal cross points do not need
to be handled. This leads to simplicity and high parallelism of our algorithms [6].

For the second order elliptic problems discretized by nonconforming element
methods, all the domain decomposition algorithms, nonoverlapping or overlapping, are
as efficient as their counterparts in the conforming cases, and even easier in implemen-
tation [6, 7]. For the Stokes problems discretized by the nonconforming mixed element
methods [5, 14], several algorithms are presented and discussed in [11]. For fourth order
elliptic problems, in the conforming case and in the Morley nonconforming discrete
case, a series of algorithms have been developed. Many numerical results are consistent
with the theoretical analysis; see [6].

The remainder of this paper consists of three sections. Extension theorems for
nonconforming elements are presented in Sect. 2. Their applications and other results
are indicated concisely in Sect. 3. Conclusions are given in Sect. 4.

2 Main results

We mainly consider the linear, selfadjoint Dirichlet elliptic problem of order 2m in
variational form given by

u € H(;n(ﬂ) : a’ﬂ(u7 U) = (fv'u)7 Vve H(’)m(ﬂ) (21)
Here, m = 1,2, Q@ C %2 is an open polygonal bounded domain and

mw=£n.

We assume that the bilinear form aq(:,-), over O, satisfies the following standard
conditions [17]:
an('w’”) = IJ,Q(U,UJ)
aq (v, v) 2 cllvli}m g, (2.2)
ae(w,v) < Cllwlla=@)llvllam(q)
where ¢ and C are positive constants.

Let Qp, = {e} be a quasi-uniform mesh of Q and let V}, be a finite element space
associated with Q5. For (2.1), in the case m = 1, V}, is the Crouzeix-Raviart element
space [5], or the piecewise quartic nonconforming rectangular element space [14], or
the Wilson element space, or the Carey element space [3] or another nonconforming
membrane element space. For (2.1), in the case m = 2, V}, is the Morley element space,

or the Ziekenwicz element space, or the Adini element space, or another nonconforming
plate element space[4]. Let

Alw,v) = Z ae{w,v)

e€Qp
and let

V2 = {v € Vi : the freedom of v vanishes at each interpolation point z € BQ}‘
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Then the nonconforming finite element discrete problem for (2.1) is
up € Vi 1 Alup,v) = (f,v), Vv e V2. (2.3)

Let I' be an open line segment in ) such that T'Ne =0, Ve € ), and let Q be
decomposed by I' into two open subdomains, denoted by ; and Qy, which satisfies

G2e=0aJnJr=9 o J2=0

For k = 1,2, we make the following definitions:

Ap(w,v) = Z a.(w,v),

e€y
vk = {v € V) : the degrees of freedom of v vanish at each nodal point z € ﬂ\m},

th,o = {v € V,? : the degrees of freedom of v vanish at each nodal point z € Q\Qk},
@ = {(v1,52) s e € VE, Ap(oe,w) =0, Vw e VEO, k=12,

the degrees of freedom of w; and v are equal at each nodal point = € I‘}.

Theorem 2.1 ([6, 10, 12, 13]). For the quasi—uniform mesh Qy,, there exist two
positive constants g, 7, independent of the mesh parameter h, such that

TA2(v2,v2) < A1(v1,v1) < 0Az(v2,v2), V (v1,02) € By

We can prove Theorem 2.1 by using a trace theorem, the regularity estimate of the
elliptic problem, the additional finite element error estimate, the inverse inequality
and using a conforming interpolation operator which forms a bridge between the
nonconforming element space and the corresponding properly selected conforming
element space. We omit its proof here. The interested reader are referred to [6, 10, 12,
13). ‘

Theorem 2.1 plays a key role in the analysis of any two-subdomain nonoverlapping
domain decomposition method for (2.3), see [7]. For example, the Dirichlet—Neumann
alternating method, also known as the Marini-Quarteroni algorithm, can be applied
to (2.3) with the same expression of the convergence factor, with o, 7, in Theorem 2.1
as that in [15].

Theorem 2.1 is the so—called extension theorem in the two-subdomain case when
(2.1) is a second order or fourth order problem. The extension theorems in the multi-
subdomain case (with crosspoints), analogous to Lemma 3.5 [1] or Lemma 3.2 [17],
have been established for second order problem, i.e. (2.1) with m = 1. It states that
the strain energy of the discrete harmonic extension function of a subdomain does
not exceed the sum of those of its adjacent (neighbouring) subdomains by at most a
factor relevant to the maximum subdomain diameter (the coarse mesh parameter) H
and the fine mesh parameter h. When V}, is a finite dimensional space whose elements
(a function) are continuous at the mesh nodes, such as the Wilson element space or
Carey element space (which are called first kind nonconforming finite element space for
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convenience), the factor is €(1 +In %)2 When V}, is a finite dimensional space whose
element (a function) are continuous at each edge midpoint of e € {2y, such as the
Crouzeix—Raviart space (which are called second kind nonconforming finite element
space), the factor is ¢(1+In &) max(1+H~2,1+In £). For the first kind nonconforming
element space Vj, preconditioners can be constructed by substructuring which are as
efficient as their counterparts in the conforming element case [6]. For the second kind
nonconforming finite element space V;, it is unnecessary and in fact impossible to
calculate the values at the internal crosspoints. For this case, a number of simple
and high parallel preconditioners and iterative domain decomposition algorithms have
been developed [6].

3 Other results

1. In the two-subdomain nonoverlap case, the existing domain decomposition algori-
thms designed for the conforming finite element discrete problems (for (2.1) with
m = 1) can be extended to the nonconforming case (for (2.1) with m = 1, 2) only after
that the description has been changed [6,7,13]. In the multi-subdomain nonoverlapping
case, we can construct preconditioners and iterative domain decomposition algorithms
for the nonconforming finite element discrete problems (for (2.1) with m = 1 only)
by revising properly those for the conforming element discrete problems {6]. Based on
the extension theorems given above and other estimates, we can show that they are as
efficient as their counterparts in the conforming element discrete case, and even easier
in implementation.

2. The overlapping domain decomposition method (the parallel Schwarz alternating
algorithm) for (2.3) has been studied when (2.1) is a second order or a fourth
order problem. In each iteration, a coarse mesh problem is introduced and solved
simultaneously with all the subproblems posed on the subdomains [8]. Its convergence
is proved by using projection operator theory. When (2.1) is a second order problem,
the convergence factor is independent of the fine mesh parameter h, and even of the
coarse mesh parameter H, when the coarse mesh is properly employed.

3. The overlapping domain decomposition methods for second order and two dimens-
ional nonselfadjoint elliptic problems discretized by the Crouzeix-Raviart elements
have also been considered. We have shown that its convergence by the discrete
maximum principle[9] under the condition that each internal angle of the triangular
elements is no larger than § — « (a is a positive constant).

4. The nonconforming mixed finite element method has been applied to solving the

following two dimensional stationary incompressible Stokes model problem with the
kinetic viscosity coefficient 1

—Au+Vp=f inQ
divu=0 in Q (3.1)
u=40 on 61},

where () is a bounded polygonal domain, u is the velocity and p the pressure. The
variational form of (3.1) is a saddle point problem. To discretize it, a piecewise
constant element space and the second kind nonconforming finite element space
are employed to approximate the pressure field and the velocity field, respectively;
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see [5, 14]. An extension theorem for the discrete Stokes problem, analogous to
Theorem 2.1, has been established based on the Brezzi-Babuska, condition, the Stokes
extension operator and Theorem 2.1. Then the two-subdomain nonoverlapping domain
decomposition algorithms can be developed and analyzed correspondingly. As for the
multi-subdomain cases, it can be handled using the techniques of Bramble, et al. [2]
and the domain decomposition methods for the Laplace equation discretized by second
kind nonconforming finite elements [11].

4 Conclusions

Through the systematic study of domain decomposition methods with nonconforming
finite elements, we see that although the nonconforming finite element function lacks
global continuity, a theoretical foundation can be established. The existing domain
decomposition methods, developed in the conforming finite element discrete case,
can be revised properly and extended to the nonconforming finite element discrete
case. It is notable that some algorithms for the second kind nonconforming finite
element discrete problems are simple and easy in implementation. But it remains an
open problem how to design and analyze the nonoverlapping domain decomposition
methods for fourth order elliptic problem in the multi-subdomain case.
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