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1 Introduction

Domain decomposition method is one of the most important approaches for solving
partial differential equations numerically. This method has many merits: the size of a
problem can be compressed by domain decomposition; various computing schemes can
be used exploiting different geometric forms of the subdomains or the different features
of the problems; parallel computing can be implemented on different subdomains, etc.
Most present work focused on domain decomposition method for elliptic equations.
Less effort has been devoloped to parabolic systems. In this article, we study the
following initial-boundary value problem:

& = Iut fzu), t€(0.T), €D,
w=0, tel0,T], =€ dn, M

Ult:o = (P(m)) T € ﬁ)

where § ¢ R™ is a bounded convex region, with a boundary 69 which is piecewise
SmOOth7 u = (ula e :UJ)T7 f = (.fl, o 7fJ)T’ w = (‘pla ot aQDJ)T, and the linear
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differential operator L = (L1, -+, Ly)T is given by

m
J .
LjuszDk(ajkl(z)Dluj)_—cj(w)uj’ D= 6__7;1‘;’ )= 1721"'7J7 k=172y"';m-
R}

We suppose that the following conditions hold: _
Hi) aj(z) is continuously differential on 2, ¢; (z) > 0 and is bounded on (2, and

m
3 ajka(@)Ekb > VP, €€ R™, 7>0.
k,l

H,) fis continuously differentiable for (t,z,u) € [0,T] X Qx R7, and
f

of
ot du

< b(1 + |u}), ‘a—f| <b.

Hy) wle) € WP (@) nWid(@).

Suppose that  is partitioned into €, ---,Q;, and that Q; N Q;; # B (@ # ), lie
the subdomains overlap. 89Q; stands for the boundary of ;.

Let t, = nAt(n = 0,1,2,---,N), i.e. NAt = T. Let u(tn, ) = u", and discretize
(1) with respect to t. We have

un+1 —un
At = Lun+1 + fn+1’ z E Q:

™| =0, (2)

u® = (),

which can be written as

(I +AtL)u™! =u® + Atft, e,
un+1l39 — 0’ (3)

where f**! = f(tpy1,z,u™ ).

The paper is organized as follows: Section 2 studies the existence for generalized
solution of nonlinear elliptic equations (3); Section 3 discusses the Picard-Schwarz
algorithm(named P-S algorithm in brief) for problem (3); the convergence of P-S
algorithm is investigated in Section 4 and a priori estimates for semidiscrete solutions

are presented in Section 5. The convergence of semidiscrete solutions is discussed in
Section 6.

2 Existence of a generalized solution of the boundary value
problem

We will now demonstrate that problem (3) has a generalized solution. The following
lemma will be used in the proofs. Consider the transform:

z=T(y,N),
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where y,z € X, X is a Banach space, A € [a,b] is a parameter, and [a, b] is a bounded
interval. We assume that

(8) T(y,A) is defined for y € X, X € [a, b]. For fixed ) € [a,b], T(y, \) is continuous
in X. For y in a bounded set of X, T'(y, A) is uniformly continuous with respect to .

(i) For any fixed A\, T'(y, \) is a compact transform.

(#i5) There exists a constant M > 0 such that all possible solutions of z—T'(z, \) =
0, A € [a, b], satisfy ||z]| < M.

(iv) Equation z — T'(z,a) = 0 has a unique solution.
Then we have

Lemma 1(Leary-Schauder fixed point theorem). Under the conditions (i)—(iv),
transform z = T(y, A) has a fized point for X € [a,b], i.e. equation z~T(z,)) = 0 has
solution for X € [a,b]. In particular, the solution of z — T(z,b) = 0 egists.

Detailed proofs can be found in [2].

Now we start to prove that problem (3) has a generalized solution. For this purpose,
we first consider the following boundary value problem containing the parameter
0<A<1:

{ (I + AtLyu™H = u™ + AALf™H,  z €, @
4

u'n+1|6§2 =0.

Taking v € Wéo) (2), and denoting f(tp+1,z,v) = h(z,v), we find using (Theorem 8.
3) that it is easy to see that the linear problem

{ (I + AtLw™ =u™ + h(z,v), z€Q, )
5

,uln+1"99 =0

has a unique generalized solution u"! € Wél)(ﬂ). Thus we can define a transform
from v € W (Q) to u™! € WV (Q): un+! = T(v, \). What remains is to test this
transform satisfies all conditions of Lemma 1; We these arguments. Hence a fixed
point exists for A € [0, 1], especially for A = 1, problem. (3) has a generalized solution

urt € WY(Q). Therefore we have

Theorem 1. If conditions Hy) — Hs) are satisfied, then the nonlinear boundary value
problem (3) has a generalized solution u™*! € w(q).

3 P-S algorithm for the boundary value problem

The algorithm proposed in this section is a combination of a Picard iteration and
Schwarz iteration, which is named the P-S algorithm. The procedure can be described
as follows:

1. Constructing the Picard Iteration, Taking uj*' € Wz(l) (Q1), and making successive
approximation for fixed n:

(n+1) (6)

I+ AtL)uéTl'l) =u" + Atf(tny1,z,uptt), z€Q,
Uq+1 |aﬂ=07 q=071727""
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II. Constructing Schwarz Iteration. For every fixed q, (6) is a linear boundary value

roblem. Denoting by ™!} = v, its Schwarz iteration can be specified as follows:
P g by g+1

Step 1. Taking an initial guess v(®) € Wz(l)(ﬂ), p:=0.
Step 2.  Solving the boundary value problems on subdomains {}; in parallel:

{ I+ AtL)vz(p"'l) = U™ + Atf(tny1, T, uf ™), z€Q;, )

v =@, zed, p=0,1,2,---, i=1,2,---,L.
Step 3.  Continuing vgp 1 4o 2, i.e. setting
D) 'uz(p'H), z €,
¢ vp, Z€N\Q;

and then taking the mean value:
1
o@D — 7 Z ﬁ§p+1),
i=1

and then setting p := p 4+ 1 and going to Step 2. From I the Picard sequence (named
the P-sequence) has been formed, and the Schwarz sequence (named the S-sequence)
is given by II. In the next section we will prove that both sequences converge.

4 Convergence of the P-S iteration

The convergence of S-sequence can be obtained by using a method similar to that of
[4]. Let V; = Wz(l)(ﬂi), V= Wz(l)(Q). Then, we have

.y . I
Theorem 2. Suppose conditions Hi) — Hs) are satisfied. If V = 3 V;, then the
=1
) I
8 -sequence {v(P)} converges to uptl in the Wél)(ﬂ) norm; if V.= 3" Vi, then {v(P}
i=1
converges geometrically to u;‘_,‘fll in the Wz(l)(ﬂ) norm.
We now prove that P-sequence {u;’;‘“ll} converges to 4™, As ¢ — oo, we denote
the error e; = u™*! — 2. From (3) and (6), we have

eg+1lon = 0.

It follows that

(€q+1,?)) + Ata(eq+1,v) = At(f(tn+1)$a un+1) - f(tn+11 T, u'l,;-l_l))'v)a Yo € W2(1) (9)7

where

J m
a(u,v) =" / {2 aiuDiu;Div; + cjujv;}ds.
J=1 o ki
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Taking v = eg4+1 and making use of Hz), we can get
llegrallz + Atllegr1llZ < biAtllegll2lega 2, 9)
where || - ||2 = a(-,-). It follows that
lleg+allz < brAtlleg]fs-

By induction, we obtain
lleglla < (b1 AL)|leq]f2- (10)

Then from (9) it follows that

AL

2
leqrll2 + Atllegsal? < ( ) legll2 + lleqsal2)
Hence,

b2
lleg1ll2 < = Atlley|I3

b
< Zleql?
for At small enough.
: 2 12
Notice that {| - |2 = ¥l “Wél)(ﬂ)' It follows that
learillimay < 4 Lleqlls < 1/ 2 (b At)eol (1)
€g+1 W2(1)(Q) =~ 2’7 gll2 > 27 1 0l]2-

(10) and (11) are the error estimates for the Picard iteration. It shows that the P-
sequence is geometrically convergent in Wz(l)(Q) norm.

Theorem 3. If the conditions of Theorem 2 are satisfied, then the error estimates (10)
and (11) hold, i.e. the P-sequence converges geometrically to the generalized solution
of prodlem (3) in Wz,(l)(ﬂ) norm.

5 A priori estimates for the semidiscrete solution

In this section we will prove a priori estimates for the generalized solution of problem
(3) in preparation for the convergence proofs in the next section.
First, from (3), we have

(™1, v) + Ata(u™,v) = (u”, v) + AL(FH ), Vo € WD (9). (12)

Taking v = u™t! and applying conditions H;) — H3), and a computation, we can

obtain
flu™]2 < Ko. (13)
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Second, from (3), we have
(™, v) + Ata(u™t,v) = (u”,v) + At(F(tnrr, T, u™ ), 0),
(u™,v) + Ata(u®,v) = (™1, v) + At(f (tn, T, u"),v).

Let wntl = E'—‘-J';—t‘i‘f-. It follows that

(W™ — w",v) + Ata(@™,v) = (f{tnp, z,u™ ) = f(tn,m,u™)0),  (14)
n=1,2,---,N — 1. We define

0_¥"% _p .
W = v+ f(0,z,¢)

Then (14) is also definited for n = 0. Taking v = w"*t! in (14), and by a computation,
we can get
u® — un—l

At

Finally, we estimate || Dju"||2. From (3), we have

lw™|l2 =

\ <Ky, n=1,2--,N. (15)
2

(W™, v) + a(u™, ) = (F*,v).
Taking v = ™! and noting estimates (13) and (15), it can be established that
ll“nl\wzmm) < K, (16)
where the constants Ky — K2 are independent of At.

Theorem 4. If the conditions of Theorem 8 are satisfied, then estimates (13), (15)
and (16) hold.

6 Convergence of semidiscrete solution

The following lemma will be used in our proofs of the rest of our theorems.

Lemma 2. Under the conditions of Theorem 3, let

t—1t t —1 _
Wa(t,2) = — 2w o+ PEeu®, b <t <ty o€ 0, an

and let Qr = {0 <t < T,z € Q). Then {Wa;} is strongly compact in Lo(Qr),
{DeWas} and and {D:Wa:} are weakly compact in Ly(QT).

‘The proof can be found in [5-6].

Now we prove that the semidiscrete solution {u™} is convergent (as At — 0). Its
limit is the generalized solution of problem (1). Let Q% = {t, < t < tp41,% € Q}.
Then, for (t,z) € Q%, we define -

un+1 —yh

At

uat(t,z) = u™r?, Tpas(t, z) = Dypu™t (k=1,2,---,m), das(t,z) =
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Thus these functions are all definited on Q7. From Lemma 2, the following estimate
holds

sup |juadllz + sup laracllz + sup fldacll < K3, k=1,2,---,m, (18)
0<t<T 0<¢<T 0<t<T

where the constant K3 is independent of A¢. Thus we can choose a subsequence
{At;} such that {vas,}, {Trae }, {Gas} converge weakly to u(t, z), Di(t, z), 4(t, ),
respectively. Similar to [1], we can prove

sup |[ullz+ sup [[Tllz+ sup |Gl < K;, k=1,2,---,m,
0<t<T 0<t<T 0<i<T

and
Up(t,x) = Dyu, a(t,z) = us.

Then using the definition of ua; (¢, ) and expression (17) of Wa(t, z), it is not difficult
to prove that {ua;} is also strongly compact in Ly(Qr). Moreover, it and {ua;,} and
{Wat,} converge strongly to the limit u(t, ).

Now we prove that limit u(¢,z) is just the generalized solution of problem (1). Let
v(t,z) be a smooth function with compact support in Qr. Then from (2) it is not
difficult to show that

T
/ {(ae va0) + a(uns,va) — (Fat,vae)}dt =0, (19)
0

where far = f(tn+1,%, az)- We choose a subsequence {A¢;} (i — oo as At; — 0) and
take the limit for

T
/{('&Atn vAtz') + a’(uAti s 'UAti) ~ (fas, 'UAti)}dt =0.
0

we obtain

T
[ttu0) +atw0) = (0t =0. (20)
1]

This shows that u(t, z) is the generalized solution of problem (1) and it is not difficult
to prove that it is unique. Hence {u™} converges strongly to the unique generalized

solution u(t, z) € Loo((0, T), WP (Q)) n WS ((0, T), La(9)) of (1).

Theorem 5. If the conditions of Theorem 4 are satisfied, then {u™} converges strongly
to the generalized solution u € Lo ((0,T), Wz(l)(ﬂ)) N Wog)((O,T), La(2)) of problem
(1).

‘We have carried our some numerical experiments using our proposed algorithm and
our numerical results demonstrate that our method is effective for solving the nonlinear
evolution equations. Because space limitations, we do not discuss these computations

in detail in this paper.
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